
Mirheo documentation
Release v1.6.0

Dmitry Alexeev Lucas Amoudruz Ivica Kicic

Jan 13, 2022

Mesoscale flow solver for biological and medical applications.

Mirheo [alexeev2020] is designed as a classical molecular dynamics code adapted for inclusion of large (consisting of
thousands of particles) rigid bodies and cells. The main features of the code include:

• fluids represented as free particles interacting with different pairwise potentials (i.e. DPD or Lennard-Jones),

• static walls of arbitrary complexity and size,

• rigid bodies with arbitrary shapes and sizes [amoudruz2021],

• viscoelastic cell membranes [economides2021], that can separate inner from outer fluids

The multi-process GPU implementation enables very fast time-to-solution without compromising physical complexity
and Python front-end ensures fast and easy simulation setup. Some benchmarks are listed in Benchmarks.

The following documentation is aimed at providing users a comprehensive simulation guide as well as exposing code
internals for the developers wishing to contribute to the project.

1 Overview

This section describes the Mirheo interface and introduces the reader to installing and running the code.

The Mirheo code is designed as a classical molecular dynamics code adapted for inclusion of rigid bodies and cells.
The simulation consists of multiple time-steps during which the particles and bodies will be displaces following laws
of mechanics and hydrodynamics. One time-step roughly consists of the following steps:

• compute all the forces in the system, which are mostly pairwise forces between different particles,

• move the particles by integrating the equations of motions,

• bounce particles off the wall surfaces so that they cannot penetrate the wall even in case of soft-core interactions,

• bounce particles off the bodies (i.e. rigid bodies and elastic membranes),

• perform additional operations dictated by plug-ins (modifications, statistics, data dumps, etc.).

1.1 Python interface

The code uses Python scripting language for the simulation setup. The script defines simulation domain, number of
MPI ranks to run; data containers, namely Particle Vectors and data handlers: Initial conditions, Integrators, Interac-
tions, Walls, Object bouncers, Object belonging checkers and Plugins.

The setup script usually starts with importing the module, e.g.:

1

import mirheo as mir

Warning: Loading the module will set the sys.exepthook to invoke MPI_Abort. Otherwise single failed
MPI process will not trigger shutdown, and a deadlock will happen.

The coordinator class, Mirheo, and several submodules will be available after that:

• ParticleVectors. Consists of classes that store the collections of particles or objects like rigid bodies or cell mem-
branes. The handlers from the other submodules usually work with one or several ParticleVector.
Typically classes of this submodule define liquid, cell membranes, rigid objects in the flow, etc.

• InitialConditions. Provides various ways of creating initial distributions of particles or objects of a
ParticleVector.

• BelongingCheckers. Provides a way to create a new ParticleVector by splitting an existing one. The
split is based on a given ObjectVector: all the particles that were inside the objects will form
one ParticleVector, all the outer particles – the other ParticleVector. Removing inner or
outer particles is also possible. Typically, that checker will be used to remove particles of fluid from
within the suspended bodies, or to create a ParticleVector describing cytoplasm of cells. See also
applyObjectBelongingChecker.

• Interactions. Various interactions that govern forces between particles. Pairwise force-fields (DPD, Lennard-
Jones) and membrane forces are available.

• Integrators. Various integrators used to advance particles’ coordinates and velocities.

• Walls. Provides ways to create various static obstacles in the flow, like a sphere, pipe, cylinder, etc. See also
makeFrozenWallParticles

• Bouncers. Provides ways to ensure that fluid particles don’t penetrate inside of objects (or the particles from
inside of membranes don’t leak out of them).

• Plugins. Some classes from this submodule may influence simulation in one way or another, e.g. adding extra
forces, adding or removing particles, and so on. Other classes are used to write simulation data, like
particle trajectories, averaged flow-fields, object coordinates, etc.

A simple script may look this way:

#!/usr/bin/env python
import mirheo as mir

Simulation time-step
dt = 0.001

1 simulation task
ranks = (1, 1, 1)

Domain setup
domain = (8, 16, 30)

Applied extra force for periodic poiseuille flow
f = 1

Create the coordinator, this should precede any other setup from mirheo package
u = mir.Mirheo(ranks, domain, debug_level=2, log_filename='log')

pv = mir.ParticleVectors.ParticleVector('pv', mass = 1) # Create a simple particle
→˓vector (continues on next page)

2

(continued from previous page)

ic = mir.InitialConditions.Uniform(number_density=8) # Specify uniform random
→˓initial conditions
u.registerParticleVector(pv=pv, ic=ic) # Register the PV and
→˓initialize its particles

Create and register DPD interaction with specific parameters
dpd = mir.Interactions.Pairwise('dpd', rc=1.0, kind="DPD", a=10.0, gamma=10.0, kBT=1.
→˓0, power=0.5)
u.registerInteraction(dpd)

Tell the simulation that the particles of pv interact with dpd interaction
u.setInteraction(dpd, pv, pv)

Create and register Velocity-Verlet integrator with extra force
vv = mir.Integrators.VelocityVerlet_withPeriodicForce('vv', force=f, direction='x')
u.registerIntegrator(vv)

This integrator will be used to advance pv particles
u.setIntegrator(vv, pv)

Set the dumping parameters
sample_every = 2
dump_every = 1000
bin_size = (1., 1., 1.)

Write some simulation statistics on the screen
u.registerPlugins(mir.Plugins.createStats('stats', every=500))

Create and register XDMF plugin
u.registerPlugins(mir.Plugins.createDumpAverage('field', [pv], sample_every, dump_
→˓every, bin_size, ["velocities"], 'h5/solvent-'))

Run 5002 time-steps
u.run(5002, dt=dt)

1.2 Running the simulation

Mirheo is intended to be executed within MPI environments, e.g.:

mpirun -np 2 python3 script.py

The code employs simple domain decomposition strategy (see Mirheo) with the work mapping fixed in the beginning
of the simulation.

Warning: When the simulation is started, every subdomain will have 2 MPI tasks working on it. One of the tasks,
referred to as compute task does the simulation itself, another one (postprocessing task) is used for asynchronous
data-dumps and postprocessing.

Note: Recommended strategy is to place two tasks per single compute node with one GPU or 2 tasks per one GPU
in multi-GPU configuration. The postprocessing tasks will not use any GPU calls, so you may not need multiprocess
GPU mode or MPS.

3

Note: If the code is started with number of tasks exactly equal to the number specified in the script, the postprocessing
will be disabled. All the plugins that use the postprocessing will not work (all the plugins that write anything, for
example). This execution mode is mainly aimed at debugging.

The running code will produce several log files (one per MPI task): see Mirheo. Most errors in the simulation setup
(like setting a negative particle mass) will be reported to the log. In case the code finishes unexpectedly, the user is
advised to take a look at the log.

2 Installation

2.1 Mirheo

Mirheo requires at least Kepler-generation NVIDIA GPU and depends on a few external tools and libraries:

• Unix-based OS

• NVIDIA CUDA toolkit version >= 9.2

• gcc compiler with c++14 support compatible with CUDA installation

• CMake version >= 3.8

• Python interpreter version >= 3.4

• MPI library

• HDF5 parallel library

• libbfd for pretty debug information in case of an error

Note: The code has been tested with mpich-3.2.1, mpich-3.3.1 and openmpi-3.1.3. A known bug in
mpich-3.3 causes Mirheo to deadlock, use another version instead.

With all the prerequisites installed, you can take the following steps to run Mirheo:

1. Get the up-to-date version of the code:

$ git clone --recursive https://github.com/cselab/Mirheo.git mirheo

2. In most cases automatic installation will work correctly, you should try it in the first place. Navigate to the folder
with the code and run the installation command:

$ cd mirheo
$ make install

In case of any issues, check the prerequisites or try a more “manual” way:

1. From the mirheo folder, create a build folder and run CMake:

$ mkdir -p build/
$ cd build
$ cmake ../

If CMake reports some packages are not found, make sure you have all the prerequisites installed and
corresponding modules loaded. If that doesn’t help, or you have some packages installed in non-default
locations, you will need to manually point CMake to the correct locations.

4

See CMake documentation for more details on how to provide package installation files.

Note: On CRAY systems you may need to tell CMake to dynamically link the libraries by the following
flag:

$ cmake -DCMAKE_EXE_LINKER_FLAGS="-dynamic" ../

Note: Usually CMake will correctly determine compute capability of your GPU. However, if compiling
on a machine without a GPU (for example on a login node of a cluster), you may manually specify the
compute capability (use your version instead of 6.0):

$ cmake -DMIR_CUDA_ARCH_NAME=6.0 ../

Note that in case you don’t specify any capability, Mirheo will be compiled for all supported architectures,
which increases compilation time and slightly increases application startup. Performance, however, should
not be affected.

2. Now you can compile the code:

$ make -j <number_of_jobs>

The library will be generated in the current build folder.

3. A simple way to use Mirheo after compilation is to install it with pip. Navigate to the root folder of Mirheo
and run the following command:

$ pip install --user --upgrade .

3. Now you should be able to use the Mirheo in your Python scripts:

import mirheo

2.2 Compile Options

Additional compile options are provided through cmake:

• MIR_MEMBRANE_DOUBLE:BOOL=OFF: Computes membrane forces (see MembraneForces) in double
precision if set to ON; default: single precision

• MIR_ROD_DOUBLE:BOOL=OFF: Computes rod forces (see RodForces) in double precision if set to ON;
default: single precision

• MIR_DOUBLE_PRECISION:BOOL=OFF: Use double precision everywhere if set to ON (including membrane
forces and rod forces); default: single precision

• MIR_USE_NVTX:BOOL=OFF: Add NVIDIA Tools Extension (NVTX) trace support for more profiling infor-
mations if set to ON; default: no NVTX

Note: Compile options can be passed by using the -D prefix:

cmake -DMIR_DOUBLE_PRECISION=ON

When using the Tools, the compile options can be passed using the CMAKE_FLAGS variable:

5

CMAKE_FLAGS="-DMIR_DOUBLE_PRECISION=ON" mir.make

Note: The compile options of the current installation can be viewd by typing in a terminal:

python -m mirheo compile_opt all

2.3 Tools

Additional helper tools can be installed for convenience and are required for testing the code.

Configuration

The tools will automatically load modules for installing and running the code. Furthermore, CMake options can
be saved in those wrapper tools for convenience. The list of modules and cmake flags can be customised by adding
corresponding files in tools/config (see available examples). The __default files can be modified accordingly
to your system.

Installation

The tools can be installed by typing:

$ cd tools/
$./configure
$ make install

Note: By default, the tools are installed in your $HOME/bin directory. It is possible to choose another
location by setting the --bin-prefix option:

$./configure --bin-prefix <my-custom-tools-location>

Note: In order to run on a cluster with a job scheduler (e.g. slurm), the --exec-cmd option should be
set to the right command (e.g. srun):

$./configure --exec-cmd <my-custom-command>

The default value is mpiexec

After installation, it is advised to test the tools by invoking

$ make test

The above command requires the atest framework (see Testing).

6

https://gitlab.ethz.ch/mavt-cse/atest.git

Tools description

mir.load

This tool is not executable but need to be sourced instead. This simply contains the list of of possible modules required
by Mirheo. mir.load.post is similar and contains modules required only for postprocessing as it migh conflict
with mir.load.

mir.make

Wrapper used to compile Mirheo. It calls the make command and additionally loads the correct modules and pass
optional CMake flags. The arguments are the same as the make command. The compilation options shown previously,
or any cmake flag, can be passed through the CMAKE_FLAGS variable, e.g.:

$ CMAKE_FLAGS="-DUSE_NVTX=ON" mir.make

mir.run

Wrapper used to run Mirheo. It runs a given command after loading the correct modules. Internally calls the
--exec-cmd passed during the configuation. Additionally, the user can execute profiling or debugging tools (see
mir.run --help for more information). The parameters for the exec-cmd can be passed through the --runargs
option, e.g.

$ mir.run --runargs "-n 2" echo "Hello!"
Hello!
Hello!

Alternatively, these arguments can be passed through the environment variable MIR_RUNARGS:

$ MIR_RUNARGS="-n 2" mir.run echo "Hello!"
Hello!
Hello!

The latter use is very useful when passing a common run option to all tests for example.

mir.post

Wrapper used to run postprocess tools. This is different from mir.run as it does not execute in parallel and can load
a different set of modules (see mir.load.post)

mir.avgh5

a simple postprocessing tool used in many tests. It allows to average a grid field contained in one or multiple h5 files
along given directions. See more detailed documentation in

$ mir.avgh5 --help

7

mir.restart.id

Convenience tool to manipulate the restart ID from multiple restart files. See more detailed documentation in

$ mir.restart.id --help

3 Testing

Mirheo can be tested with a set of regression tests (located in tests) and unit tests (located in units).

3.1 Regression tests

Regression testing makes use of the atest framework. This can be installed as follows:

$ git clone https://gitlab.ethz.ch/mavt-cse/atest.git
$ cd atest
$ make bin

Note: By default, this will install the atest executables in $HOME/bin folder. This location should be in
your PATH variable

The regression tests are a set of python scripts. They make use of additional dependencies:

• numpy

• trimesh

• mpi4py

Which can all be installed via pip. All tests can be run by typing:

$ cd tests
$ make test

Note: You need to install the tools before running the tests

3.2 Units tests

Unit tests are compiled together with the google-test framework. The unit tests are compiled by adding the option
-DBUILD_TESTS=ON to cmake (see Installation). The binaries are placed in the build folder.

$ mir.make units
$ cd build
$ mir.make test

Note: You need to install the tools before running the unit tests

8

https://gitlab.ethz.ch/mavt-cse/atest.git
https://github.com/google/googletest

3.3 Double precision

If compiled with DOUBLE_PRECISION=ON (see Installation), the reference files for the regression tests are inside
the tests/test_data_double folder. The tests can be run by typing:

$ cd tests
$ make test_double

4 Tutorials

This section will guide you in the Mirheo interface step by step with examples.

4.1 Hello World: run Mirheo

We start with a very minimal script running Mirheo.

Listing 1: hello.py

#!/usr/bin/env python

first we need to import the module
import mirheo as mir

dt = 0.001 # simulation time step
ranks = (1, 1, 1) # number of ranks in x, y, z directions
domain = (32.0, 16.0, 16.0) # domain size in x, y, z directions

create the coordinator
u = mir.Mirheo(ranks, domain, debug_level=3, log_filename='log')

u.run(100, dt=dt) # Run 100 time-steps

The time step of the simulation and the domain size are common to all objects in the simulation, hence it has to be
passed to the coordinator (see its constructor). We do not add anything more before running the simulation (last
line).

Note: We also specified the number of ranks in each direction. Together with the domain size, this tells Mirheo
how the simulation domain will be split across MPI ranks. The number of simulation tasks must correspond to this
variable.

The above script can be run as:

mpirun -np 1 python3 hello.py

Running hello.py will only print the “hello world” message of Mirheo, which consists of the version and git SHA1
of the code. Furthermore, Mirheo will dump log files (one per MPI rank) which name is specified when creating
the coordinator. Depending on the debug_level variable, the log files will provide information on the simulation
progress.

9

4.2 DPD solvent at rest

We will now run a simulation of particles in a periodic box interacting with Pairwise forces of type “DPD”. We use
a VelocityVerlet integrator to advance particles in time. The initial conditions are Uniform randomly placed
particles in the domain with a given density.

Listing 2: rest.py

#!/usr/bin/env python

import mirheo as mir

dt = 0.001
rc = 1.0 # cutoff radius
number_density = 8.0

ranks = (1, 1, 1)
domain = (16.0, 16.0, 16.0)

u = mir.Mirheo(ranks, domain, debug_level=3, log_filename='log')

pv = mir.ParticleVectors.ParticleVector('pv', mass = 1.0) # Create a simple Particle
→˓Vector (PV) named 'pv'
ic = mir.InitialConditions.Uniform(number_density) # Specify uniform random
→˓initial conditions
u.registerParticleVector(pv, ic) # Register the PV and
→˓initialize its particles

Create and register DPD interaction with specific parameters and cutoff radius
dpd = mir.Interactions.Pairwise('dpd', rc, kind="DPD", a=10.0, gamma=10.0, kBT=1.0,
→˓power=0.5)
u.registerInteraction(dpd)

Tell the simulation that the particles of pv interact with dpd interaction
u.setInteraction(dpd, pv, pv)

Create and register Velocity-Verlet integrator
vv = mir.Integrators.VelocityVerlet('vv')
u.registerIntegrator(vv)

This integrator will be used to advance pv particles
u.setIntegrator(vv, pv)

Write some simulation statistics on the screen every 500 time steps
u.registerPlugins(mir.Plugins.createStats('stats', every=500))

Dump particle data
dump_every = 500
u.registerPlugins(mir.Plugins.createDumpParticles('part_dump', pv, dump_every, [],
→˓'h5/solvent_particles-'))

u.run(5002, dt=dt)

This example demonstrates how to build a simulation:

1. Create the coordinator

2. Create the simulation objects (particle vectors, initial conditions. . .)

10

3. Register the above objects into the coordinator (see register* functions)

4. link the registered objects together in the coordinator (see set* functions)

The above script can be run as:

mpirun -np 2 python3 rest.py

Note: The rest.py script contains plugins of type Stats and ParticleDumper, which needs a postprocess rank
additionally to the simulation rank in order to be active. The simulation is then launched with 2 ranks.

The execution should output the stats.txt file as well as information output in the console. Additionally, the particle
positions and velocities are dumped in the h5 folder.

Fig. 1: Snapshot of the particles dumped by executing the rest.py script. Visualization made in visit.

4.3 Adding Walls

We extend the previous example by introducing Walls in the simulation. Two components are required to form walls:

• a geometry representation of the wall surface. In Mirheo, wall surfaces are represented as zero level set of
a Signed Distance Function (SDF). This is used to decide which particles are kept at the beginning of the
simulation, but also to prevent penetrability of the walls by solvent particles.

• frozen particles, a layer of particles outside of the wall geometry which interact with the inside particles to
prevent density fluctuations in the vicinity of the walls.

Note: The user has to set the interactions with the frozen particles explicitly

11

https://wci.llnl.gov/simulation/computer-codes/visit

Listing 3: walls.py

#!/usr/bin/env python

import mirheo as mir

rc = 1.0 # cutoff radius
number_density = 8.0
dt = 0.001
ranks = (1, 1, 1)
domain = (16.0, 16.0, 16.0)

u = mir.Mirheo(ranks, domain, debug_level=3, log_filename='log')

pv = mir.ParticleVectors.ParticleVector('pv', mass = 1.0)
ic = mir.InitialConditions.Uniform(number_density)
dpd = mir.Interactions.Pairwise('dpd', rc, kind="DPD", a=10.0, gamma=10.0, kBT=1.0,
→˓power=0.5)
vv = mir.Integrators.VelocityVerlet('vv')

u.registerInteraction(dpd)
u.registerParticleVector(pv, ic)
u.registerIntegrator(vv)

creation of the walls
we create a cylindrical pipe passing through the center of the domain along
center = (domain[1]*0.5, domain[2]*0.5) # center in the (yz) plane
radius = 0.5 * domain[1] - rc # radius needs to be smaller than half of the
→˓domain

because of the frozen particles

wall = mir.Walls.Cylinder("cylinder", center=center, radius=radius, axis="x",
→˓inside=True)

u.registerWall(wall) # register the wall in the coordinator

we now create the frozen particles of the walls
the following command is running a simulation of a solvent with given density
→˓equilibrating with dpd interactions and vv integrator
for 1000 steps.
It then selects the frozen particles according to the walls geometry, register and
→˓returns the newly created particle vector.
pv_frozen = u.makeFrozenWallParticles(pvName="wall", walls=[wall], interactions=[dpd],
→˓ integrator=vv, number_density=number_density, dt=dt)

set the wall for pv
this is required for non-penetrability of the solvent thanks to bounce-back
this will also remove the initial particles which are not inside the wall geometry
u.setWall(wall, pv)

now the pv also interacts with the frozen particles!
u.setInteraction(dpd, pv, pv)
u.setInteraction(dpd, pv, pv_frozen)

pv_frozen do not move, only pv needs an integrator in this case
u.setIntegrator(vv, pv)

u.registerPlugins(mir.Plugins.createStats('stats', every=500))

(continues on next page)

12

(continued from previous page)

dump_every = 500
u.registerPlugins(mir.Plugins.createDumpParticles('part_dump', pv, dump_every, [],
→˓'h5/solvent_particles-'))

we can also dump the frozen particles for visualization purpose
u.registerPlugins(mir.Plugins.createDumpParticles('part_dump_wall', pv_frozen, dump_
→˓every, [], 'h5/wall_particles-'))

we can dump the wall sdf in xdmf + h5 format for visualization purpose
the dumped file is a grid with spacings h containing the SDF values
u.dumpWalls2XDMF([wall], h = (0.5, 0.5, 0.5), filename = 'h5/wall')

u.run(5002, dt=dt)

Note: A ParticleVector returned by makeFrozenWallParticles is automatically registered in the coor-
dinator. There is therefore no need to provide any InitialConditions object.

This example demonstrates how to construct walls:

1. Create Walls representation

2. Create Interactions and an Integrator to equilibrate frozen particles

3. Create the frozen particles with mmirheo.Mirheo.makeFrozenWallParticles()

4. Set walls to given PVs with mmirheo.Mirheo.setWall()

5. Set interactions with the frozen particles as normal PVs

The execution of walls.py should output the stats.txt file as well as information output in the console. Additionally,
frozen and solvent particles, as well as the walls SDF are dumped in the h5 folder.

Fig. 2: Snapshot of the data dumped by executing the walls.py script. The white particles represent the solvent, the
blue particles are the frozen wall particles and the surface is the 0 level set of the SDF file.

13

4.4 Membranes

Membranes are a set of particles connected into a triangle mesh. They can interact as normal PVs but have additional
internal interactions, which we will use in this example. Here we simulate one membrane with a given initial mesh
“rbc_mesh.py” which can be taken from the data/ folder of the repository. The membrane is subjected to shear,
bending, viscous and constraint forces and evolves over time thanks to a VelocityVerlet integrator.

Listing 4: membrane.py

#!/usr/bin/env python

import mirheo as mir

dt = 0.001

ranks = (1, 1, 1)
domain = (12, 12, 12)

u = mir.Mirheo(ranks, domain, debug_level=3, log_filename='log')

we need to first create a mesh before initializing the membrane vector
mesh_rbc = mir.ParticleVectors.MembraneMesh("rbc_mesh.off")

create a MembraneVector with the given mesh
pv_rbc = mir.ParticleVectors.MembraneVector("rbc", mass=1.0, mesh=mesh_rbc)
place initial membrane
we need a position pos and an orientation described by a quaternion q
here we create only one membrane at the center of the domain
pos_q = [0.5*domain[0], 0.5*domain[1], 0.5*domain[2], # position

1.0, 0.0, 0.0, 0.0] # quaternion
ic_rbc = mir.InitialConditions.Membrane([pos_q])
u.registerParticleVector(pv_rbc, ic_rbc)

next we store the parameters in a dictionary
prms_rbc = {

"x0" : 0.457,
"ka_tot" : 4900.0,
"kv_tot" : 7500.0,
"ka" : 5000,
"ks" : 0.0444 / 0.000906667,
"mpow" : 2.0,
"gammaC" : 52.0,
"kBT" : 0.0,
"tot_area" : 62.2242,
"tot_volume" : 26.6649,
"kb" : 44.4444,
"theta" : 6.97

}

now we create the internal interaction
here we take the WLC model for shear forces and Kantor model for bending forces.
the parameters are passed in a kwargs style
int_rbc = mir.Interactions.MembraneForces("int_rbc", "wlc", "Kantor", **prms_rbc)

then we proceed as usual to make th membrane particles evolve in time
vv = mir.Integrators.VelocityVerlet('vv')
u.registerIntegrator(vv)

(continues on next page)

14

(continued from previous page)

u.setIntegrator(vv, pv_rbc)
u.registerInteraction(int_rbc)
u.setInteraction(int_rbc, pv_rbc, pv_rbc)

dump the mesh every 50 steps in ply format to the folder 'ply/'
u.registerPlugins(mir.Plugins.createDumpMesh("mesh_dump", pv_rbc, 50, "ply/"))

u.run(5002, dt=dt)

Note: The interactions handle different combinations of shear and bending models. Each model may require different
parameters. Refer to mmirheo.Interactions.MembraneForces() for more information on the models and
their corresponding parameters.

Fig. 3: Sequence data dumped by executing the membrane.py script.

4.5 Creating Cells with Different inner and outer liquids

It is easy to extend the above simple examples into quite complicated simulation setups. In this example we simulate
a suspension of a few membranes inside a solvent. We also show here how to split inside from outside solvents into
2 ParticleVectors. This is useful when the 2 solvents do not have the same properties (such as viscosity). The
example also demonstrates how to avoid penetration of the solvents through the membranes thanks to mmirheo.
Bouncers.

Note that in this example, we also show that it is easy to add many different interactions between given particle vectors.

Listing 5: membranes_solvents.py

#!/usr/bin/env python

import mirheo as mir

dt = 0.001
rc = 1.0
number_density = 8.0

ranks = (1, 1, 1)
domain = (16.0, 16.0, 16.0)

u = mir.Mirheo(ranks, domain, debug_level=3, log_filename='log')

create the particle vectors
(continues on next page)

15

(continued from previous page)

#############################

create MembraneVector for membranes
mesh_rbc = mir.ParticleVectors.MembraneMesh("rbc_mesh.off")

pv_rbc = mir.ParticleVectors.MembraneVector("rbc", mass=1.0, mesh=mesh_rbc)
pos_qs = [[5.0, 5.0, 2.0, 1.0, 0.0, 0.0, 0.0], # we create 4 membranes

[11.0, 5.0, 6.0, 1.0, 0.0, 0.0, 0.0],
[5.0, 11.0, 10.0, 1.0, 0.0, 0.0, 0.0],
[11.0, 11.0, 14.0, 1.0, 0.0, 0.0, 0.0]]

ic_rbc = mir.InitialConditions.Membrane(pos_qs)
u.registerParticleVector(pv_rbc, ic_rbc)

create particleVector for outer solvent
pv_outer = mir.ParticleVectors.ParticleVector('pv_outer', mass = 1.0)
ic_outer = mir.InitialConditions.Uniform(number_density)
u.registerParticleVector(pv_outer, ic_outer)

To create the inner solvent, we split the outer solvent (which originally occupies
the whole domain) into outer and inner solvent
This is done thanks to the belonging checker:
inner_checker = mir.BelongingCheckers.Mesh("inner_solvent_checker")

the checker needs to be registered, as any other object; it is associated to a
→˓given object vector
u.registerObjectBelongingChecker(inner_checker, pv_rbc)

we can now apply the checker to create the inner PV
pv_inner = u.applyObjectBelongingChecker(inner_checker, pv_outer, correct_every = 0,
→˓inside = "pv_inner")

interactions
##############

prms_rbc = {
"x0" : 0.457,
"ka_tot" : 4900.0,
"kv_tot" : 7500.0,
"ka" : 5000,
"ks" : 0.0444 / 0.000906667,
"mpow" : 2.0,
"gammaC" : 52.0,
"kBT" : 0.0,
"tot_area" : 62.2242,
"tot_volume" : 26.6649,
"kb" : 44.4444,
"theta" : 6.97

}

int_rbc = mir.Interactions.MembraneForces("int_rbc", "wlc", "Kantor", **prms_rbc)
int_dpd_oo = mir.Interactions.Pairwise('dpd_oo', rc, kind="DPD", a=10.0, gamma=10.0,
→˓kBT=1.0, power=0.5)
int_dpd_ii = mir.Interactions.Pairwise('dpd_ii', rc, kind="DPD", a=10.0, gamma=20.0,
→˓kBT=1.0, power=0.5)
int_dpd_io = mir.Interactions.Pairwise('dpd_io', rc, kind="DPD", a=10.0, gamma=15.0,
→˓kBT=1.0, power=0.5)

(continues on next page)

16

(continued from previous page)

int_dpd_sr = mir.Interactions.Pairwise('dpd_sr', rc, kind="DPD", a=0.0, gamma=15.0,
→˓kBT=1.0, power=0.5)

u.registerInteraction(int_rbc)
u.registerInteraction(int_dpd_oo)
u.registerInteraction(int_dpd_ii)
u.registerInteraction(int_dpd_io)
u.registerInteraction(int_dpd_sr)

u.setInteraction(int_dpd_oo, pv_outer, pv_outer)
u.setInteraction(int_dpd_ii, pv_inner, pv_inner)
u.setInteraction(int_dpd_io, pv_inner, pv_outer)

u.setInteraction(int_rbc, pv_rbc, pv_rbc)

u.setInteraction(int_dpd_sr, pv_outer, pv_rbc)
u.setInteraction(int_dpd_sr, pv_inner, pv_rbc)

integrators
#############

vv = mir.Integrators.VelocityVerlet('vv')
u.registerIntegrator(vv)

u.setIntegrator(vv, pv_outer)
u.setIntegrator(vv, pv_inner)
u.setIntegrator(vv, pv_rbc)

Bouncers
##########

The solvent must not go through the membrane
we can enforce this by setting a bouncer
bouncer = mir.Bouncers.Mesh("membrane_bounce", "bounce_maxwell", kBT=0.5)

we register the bouncer object as any other object
u.registerBouncer(bouncer)

now we can set what PVs bounce on what OV:
u.setBouncer(bouncer, pv_rbc, pv_outer)
u.setBouncer(bouncer, pv_rbc, pv_inner)

plugins
#########

u.registerPlugins(mir.Plugins.createStats('stats', every=500))

dump_every = 500
u.registerPlugins(mir.Plugins.createDumpParticles('part_dump_inner', pv_inner, dump_
→˓every, [], 'h5/inner-'))
u.registerPlugins(mir.Plugins.createDumpParticles('part_dump_outer', pv_outer, dump_
→˓every, [], 'h5/outer-'))
u.registerPlugins(mir.Plugins.createDumpMesh("mesh_dump", pv_rbc, dump_every, "ply/"))

u.run(5002, dt=dt)

17

Note: A ParticleVector returned by applyObjectBelongingChecker is automatically registered in the
coordinator. There is therefore no need to provide any InitialConditions object.

Fig. 4: Snapshots of the output files from membranes_solvents.py. White particles are the outer solvent, blue particles
are inner. Two of the four membranes are cut for visualization purpose.

4.6 Creating Rigid Objects

Rigid objects are modeled as frozen particles moving together in a rigid motion, together with bounce back of particles,
similarly to the walls. In Mirheo, we need to create a RigidObjectVector, in which each rigid object has
the same frozen particles template. Generating these frozen particles can be done in a separate simulation using a
BelongingChecker. This is shown in the following script for the simple mesh sphere_mesh.off which can be
found in the data/ folder:

Listing 6: generate_frozen_rigid.py

import mirheo as mir
import numpy as np
import trimesh

def recenter(coords, com):
coords = [[r[0]-com[0], r[1]-com[1], r[2]-com[2]] for r in coords]
return coords

dt = 0.001
rc = 1.0
mass = 1.0
number_density = 10.0
niter = 1000

the triangle mesh used to create the object
here we load the file using trimesh for convenience

(continues on next page)

18

(continued from previous page)

m = trimesh.load("sphere_mesh.off");

trimesh is able to compute the inertia tensor
we assume it is diagonal here
inertia = [row[i] for i, row in enumerate(m.moment_inertia)]

ranks = (1, 1, 1)
domain = (16, 16, 16)

u = mir.Mirheo(ranks, domain, debug_level=3, log_filename='log')

dpd = mir.Interactions.Pairwise('dpd', rc, kind="DPD", a=10.0, gamma=10.0, kBT=0.5,
→˓power=0.5)
vv = mir.Integrators.VelocityVerlet('vv')

we create here a fake rigid object in the center of the domain with only 2 particles
those particles will be used to compute the extents in the object belonging, so they
must be located in the to corners of the bounding box of the object
this is only to be able to make use of the belonging checker

bb_hi = m.vertices.max(axis=0).tolist()
bb_lo = m.vertices.min(axis=0).tolist()

coords = [bb_lo, bb_hi]
com_q = [[0.5 * domain[0], 0.5 * domain[1], 0.5 * domain[2], 1, 0, 0, 0]]

mesh = mir.ParticleVectors.Mesh(m.vertices.tolist(), m.faces.tolist())
fake_ov = mir.ParticleVectors.RigidObjectVector('fake_ov', mass, inertia, len(coords),
→˓ mesh)
fake_ic = mir.InitialConditions.Rigid(com_q, coords)

belonging_checker = mir.BelongingCheckers.Mesh("mesh_checker")

similarly to wall creation, we freeze particles inside a rigid object
pv_rigid = u.makeFrozenRigidParticles(belonging_checker, fake_ov, fake_ic, [dpd], vv,
→˓number_density, mass, dt=dt, nsteps=niter)

if u.isMasterTask():
coords = pv_rigid.getCoordinates()
coords = recenter(coords, com_q[0])
np.savetxt("rigid_coords.txt", coords)

Note: here we make use of trimesh as we need some properties of the mesh. This would also allow to load many
other formats not supported by Mirheo, such as ply.

Note: The saved coordinates must be in the frame of reference of the rigid object, hence the shift at the end of the
script.

We can now run a simulation using our newly created rigid object. Let us build a suspension of spheres in a DPD
solvent:

19

https://github.com/mikedh/trimesh

Listing 7: rigid_suspension.py

#!/usr/bin/env python

import mirheo as mir
import numpy as np
import trimesh

dt = 0.001
rc = 1.0
mass = 1.0
number_density = 10

m = trimesh.load("sphere_mesh.off");
inertia = [row[i] for i, row in enumerate(m.moment_inertia)]

ranks = (1, 1, 1)
domain = (16, 8, 8)

u = mir.Mirheo(ranks, domain, debug_level=3, log_filename='log', no_splash=True)

pv_solvent = mir.ParticleVectors.ParticleVector('solvent', mass)
ic_solvent = mir.InitialConditions.Uniform(number_density)

dpd = mir.Interactions.Pairwise('dpd', rc, kind="DPD", a=10.0, gamma=10.0, kBT=0.01,
→˓power=0.5)
repulsive LJ to avoid overlap between spheres
cnt = mir.Interactions.Pairwise('cnt', rc, kind="RepulsiveLJ", epsilon=0.28, sigma=0.
→˓8, max_force=400.0)

vv = mir.Integrators.VelocityVerlet_withPeriodicForce('vv', force=1.0, direction="x")

com_q = [[2.0, 6.0, 5.0, 1.0, 0.0, 0.0, 0.0],
[6.0, 7.0, 5.0, 1.0, 0.0, 0.0, 0.0],
[10., 6.0, 5.0, 1.0, 0.0, 0.0, 0.0],
[4.0, 2.0, 4.0, 1.0, 0.0, 0.0, 0.0],
[8.0, 3.0, 2.0, 1.0, 0.0, 0.0, 0.0]]

coords = np.loadtxt("rigid_coords.txt").tolist()
mesh = mir.ParticleVectors.Mesh(m.vertices.tolist(), m.faces.tolist())

pv_rigid = mir.ParticleVectors.RigidObjectVector('spheres', mass, inertia,
→˓len(coords), mesh)
ic_rigid = mir.InitialConditions.Rigid(com_q, coords)
vv_rigid = mir.Integrators.RigidVelocityVerlet("vv_rigid")

u.registerParticleVector(pv_solvent, ic_solvent)
u.registerIntegrator(vv)
u.setIntegrator(vv, pv_solvent)

u.registerParticleVector(pv_rigid, ic_rigid)
u.registerIntegrator(vv_rigid)
u.setIntegrator(vv_rigid, pv_rigid)

u.registerInteraction(dpd)
u.registerInteraction(cnt)
u.setInteraction(dpd, pv_solvent, pv_solvent)

(continues on next page)

20

(continued from previous page)

u.setInteraction(dpd, pv_solvent, pv_rigid)
u.setInteraction(cnt, pv_rigid, pv_rigid)

we need to remove the solvent particles inside the rigid objects
belonging_checker = mir.BelongingCheckers.Mesh("mesh checker")
u.registerObjectBelongingChecker(belonging_checker, pv_rigid)
u.applyObjectBelongingChecker(belonging_checker, pv_solvent, correct_every=0, inside=
→˓"none", outside="")

apply bounce
bb = mir.Bouncers.Mesh("bounce_rigid", "bounce_maxwell", kBT=0.01)
u.registerBouncer(bb)
u.setBouncer(bb, pv_rigid, pv_solvent)

dump the mesh every 200 steps in ply format to the folder 'ply/'
u.registerPlugins(mir.Plugins.createDumpMesh("mesh_dump", pv_rigid, 200, "ply/"))

u.run(10000, dt=dt)

Note: We again used a BelongingChecker in order to remove the solvent inside the rigid objects.

Fig. 5: Snapshots of the output files from rigid_suspension.py.

4.7 Going further

A set of maintained tests can be used as examples in the tests/ folder. These tests use many features of Mirheo and
can serve as a baseline for building more complex simulations. See also the Testing section of this documentation.

5 Benchmarks

The following benchmarks represent typical use cases of Mirheo. They were performed on the Piz-Daint supercom-
puter for both strong and weak scaling. See in benchmarks/cases/ for more informations about the run scripts.

21

https://www.cscs.ch/computers/piz-daint/

5.1 Bulk Solvent

Periodic Poiseuille flow in a periodic domain in every direction, with solvent only. Timings are based on the average
time-step wall time, measured from the createStats plugin.

Fig. 6: strong scaling for multiple domain sizes

Fig. 7: weak scaling efficiency for multiple subdomain sizes

The weak scaling efficiency is very close to 1 thanks to the almost perfect overlapping of communication and compu-
tation.

5.2 Bulk Blood

Periodic Poiseuille flow for blood with 45% Hematocrite in a periodic domain in every direction. Timings are based
on the average time-step wall time, measured from the createStats plugin.

The weak scaling efficiency is lower than in the solvent only case because of the complexity of the problem:

• Multiple solvents

• FSI interactions

• contact interactions

22

Fig. 8: strong scaling for multiple domain sizes

Fig. 9: weak scaling efficiency for multiple subdomain sizes

23

• Many objects

• Bounce back on membranes

The above induces a lot more communication than the simple solvent only case.

5.3 Poiseuille Flow

Poiseuille flow between two plates (walls), with solvent only. Timings are based on the average time-step wall time,
measured from the createStats plugin.

Fig. 10: strong scaling for multiple domain sizes

Fig. 11: weak scaling efficiency for multiple subdomain sizes

5.4 Rigid Objects suspension

Periodic Poiseuille flow for rigid suspensions in a periodic domain. Timings are based on the average time-step wall
time, measured from the createStats plugin.

24

Fig. 12: strong scaling for multiple domain sizes

Fig. 13: weak scaling efficiency for multiple subdomain sizes

25

5.5 I/O overlap with computation

Data dump every 100 steps for the periodic Poiseuille flow benchmark. Computation timings are based on the average
time-step wall time, measured from the createStats plugin when no I/O is performed. The I/O timings are
extracted from the log files. The total timings are based on the average time-step wall time when I/O is active.

Fig. 14: Overlap of data dump and computation

6 Mirheo coordinator

The coordinator class stitches together data containers, Particle Vectors, and all the handlers, and provides functions
to manipulate the system components.

A single instance of this class should be created in the beginning of any simulation setup.

Note: Creating the coordinator will internally call the MPI_Init() function, and its destruction will call
MPI_Finalize(). Therefore if using a mpi4py Python module, it should be imported in the following way:

import mpi4py
mpi4py.rc(initialize=False, finalize=False)
from mpi4py import MPI

class Mirheo
Main coordination class, should only be one instance at a time

Methods

__init__(nranks: int3, domain: real3, log_filename: str=’log’, debug_level: int=-1, check-
point_every: int=0, checkpoint_folder: str=’restart/’, checkpoint_mode: str=’PingPong’,
max_obj_half_length: float=0.0, cuda_aware_mpi: bool=False, no_splash: bool=False,
comm_ptr: int=0)→ None

Create the Mirheo coordinator.

Warning: Debug level determines the amount of output produced by each of the simulation processes:

0. silent: no log output

1. only report fatal errors

26

2. report serious errors

3. report important information steps of simulation and warnings (this is the default level)

4. report not critical information

5. report some debug information

6. report more debug

7. report all the debug

8. force flushing to the file after each message

Debug levels above 4 or 5 may significanlty increase the runtime, they are only recommended to debug
errors. Flushing increases the runtime yet more, but it is required in order not to lose any messages in
case of abnormal program abort.

The default debug level may be modified by setting the MIRHEO_DEBUG_LEVEL environment vari-
able to the desired value. This variable may be useful when Mirheo is linked as part of other codes, in
which case the debug_level variable affects only parts of the execution.

Parameters

• nranks – number of MPI simulation tasks per axis: x,y,z. If postprocess is enabled, the
same number of the postprocess tasks will be running

• domain – size of the simulation domain in x,y,z. Periodic boundary conditions are ap-
plied at the domain boundaries. The domain will be split in equal chunks between the MPI
ranks. The largest chunk size that a single MPI rank can have depends on the total number
of particles, handlers and hardware, and is typically about 1203 − 2003.

• log_filename – prefix of the log files that will be created. Logging is implemented
in the form of one file per MPI rank, so in the simulation folder NP files with names
log_00000.log, log_00001.log, . . . will be created, where NP is the total number of MPI
ranks. Each MPI task (including postprocess) writes messages about itself into his own
log file, and the combined log may be created by merging all the individual ones and
sorting with respect to time. If this parameter is set to ‘stdout’ or ‘stderr’ standard output
or standard error streams will be used instead of the file, however, there is no guarantee
that messages from different ranks are synchronized.

• debug_level – Debug level from 0 to 8, see above.

• checkpoint_every – save state of the simulation components (particle vectors and
handlers like integrators, plugins, etc.)

• checkpoint_folder – folder where the checkpoint files will reside (for Checkpoint
mechanism), or folder prefix (for Snapshot mechanism)

• checkpoint_mode – set to “PingPong” to keep only the last 2 checkpoint states; set to
“Incremental” to keep all checkpoint states.

• max_obj_half_length – Half of the maximum size of all objects. Needs to be set
when objects are self interacting with pairwise interactions.

• cuda_aware_mpi – enable CUDA Aware MPI. The MPI library must support that fea-
ture, otherwise it may fail.

• no_splash – don’t display the splash screen when at the start-up.

• comm_ptr – pointer to communicator. By default MPI_COMM_WORLD will be used

27

applyObjectBelongingChecker(checker: mirheo::ObjectBelongingChecker, pv:
mirheo::ParticleVector, correct_every: int=0, inside: str=”,
outside: str=”)→ mirheo::ParticleVector

Apply the checker to the given particle vector. One and only one of the options inside or outside has to
be specified.

Parameters

• checker – instance of BelongingChecker

• pv – ParticleVector that will be split (source PV)

• inside – if specified and not “none”, a new ParticleVector with name inside will
be returned, that will keep the inner particles of the source PV. If set to “none”, None
object will be returned. In any case, the source PV will only contain the outer particles

• outside – if specified and not “none”, a new ParticleVector with name outside
will be returned, that will keep the outer particles of the source PV. If set to “none”, None
object will be returned. In any case, the source PV will only contain the inner particles

• correct_every – If greater than zero, perform correction every this many time-steps.
Correction will move e.g. inner particles of outer PV to the :inner PV and viceversa. If
one of the PVs was defined as “none”, the ‘wrong’ particles will be just removed.

Returns New ParticleVector or None depending on inside and outside options

computeVolumeInsideWalls(walls: List[mirheo::Wall], nSamplesPerRank: int=100000)→ float
Compute the volume inside the given walls in the whole domain (negative values are the ‘inside’ of the
simulation). The computation is made via simple Monte-Carlo.

Parameters

• walls – sdf based walls

• nSamplesPerRank – number of Monte-Carlo samples used per rank

deregisterIntegrator(integrator: mirheo::Integrator)→ None
Deregister a integrator.

deregisterPlugins(arg0: mirheo::SimulationPlugin, arg1: mirheo::PostprocessPlugin)→ None
Deregister a plugin.

dumpWalls2XDMF(walls: List[mirheo::Wall], h: real3, filename: str=’xdmf/wall’)→ None
Write Signed Distance Function for the intersection of the provided walls (negative values are the ‘inside’
of the simulation)

Parameters

• walls – list of walls to dump; the output sdf will be the union of all walls inside

• h – cell-size of the resulting grid

• filename – base filename output, will create to files filename.xmf and filename.h5

getState(self: Mirheo)→ MirState
Return mirheo state

isComputeTask(self: Mirheo)→ bool
Returns True if the current rank is a simulation task and False if it is a postrprocess task

isMasterTask(self: Mirheo)→ bool
Returns True if the current rank is the root

log_compile_options(self: Mirheo)→ None
output compile times options in the log

28

makeFrozenRigidParticles(checker: mirheo::ObjectBelongingChecker, shape:
mirheo::ObjectVector, icShape: mirheo::InitialConditions, inter-
actions: List[mirheo::Interaction], integrator: mirheo::Integrator,
number_density: float, mass: float=1.0, dt: float, nsteps: int=1000)
→ mirheo::ParticleVector

Create particles frozen inside object.

Note: A separate simulation will be run for every call to this function, which may take certain amount of
time. If you want to save time, consider using restarting mechanism instead

Parameters

• checker – object belonging checker

• shape – object vector describing the shape of the rigid object

• icShape – initial conditions for shape

• interactions – list of Interaction that will be used to construct the equilibrium
particles distribution

• integrator – this Integrator will be used to construct the equilibrium particles
distribution

• number_density – target particle number density

• mass – the mass of a single frozen particle

• dt – time step

• nsteps – run this many steps to achieve equilibrium

Returns New ParticleVector that will contain particles that are close to the wall boundary,
but still inside the wall.

makeFrozenWallParticles(pvName: str, walls: List[mirheo::Wall], interactions:
List[mirheo::Interaction], integrator: mirheo::Integrator, num-
ber_density: float, mass: float=1.0, dt: float, nsteps: int=1000) →
mirheo::ParticleVector

Create particles frozen inside the walls.

Note: A separate simulation will be run for every call to this function, which may take certain amount of
time. If you want to save time, consider using restarting mechanism instead

Parameters

• pvName – name of the created particle vector

• walls – array of instances of Wall for which the frozen particles will be generated

• interactions – list of Interaction that will be used to construct the equilibrium
particles distribution

• integrator – this Integrator will be used to construct the equilibrium particles
distribution

• number_density – target particle number density

• mass – the mass of a single frozen particle

29

• dt – time step

• nsteps – run this many steps to achieve equilibrium

Returns New ParticleVector that will contain particles that are close to the wall boundary,
but still inside the wall.

registerBouncer(bouncer: mirheo::Bouncer)→ None
Register Object Bouncer

Parameters bouncer – the Bouncer to register

registerIntegrator(integrator: mirheo::Integrator)→ None
Register an Integrator to the coordinator

Parameters integrator – the Integrator to register

registerInteraction(interaction: mirheo::Interaction)→ None
Register an Interaction to the coordinator

Parameters interaction – the Interaction to register

registerObjectBelongingChecker(checker: mirheo::ObjectBelongingChecker, ov:
mirheo::ObjectVector)→ None

Register Object Belonging Checker

Parameters

• checker – instance of BelongingChecker

• ov – ObjectVector belonging to which the checker will check

registerParticleVector(pv: mirheo::ParticleVector, ic: mirheo::InitialConditions=None) →
None

Register particle vector

Parameters

• pv – ParticleVector

• ic – InitialConditions that will generate the initial distibution of the particles

registerPlugins(arg0: mirheo::SimulationPlugin, arg1: mirheo::PostprocessPlugin)→ None
Register Plugins

registerWall(wall: mirheo::Wall, check_every: int=0)→ None
Register a Wall.

Parameters

• wall – the Wall to register

• check_every – if positive, check every this many time steps if particles penetrate the
walls

restart(folder: str=’restart/’)→ None
Restart the simulation. This function should typically be called just before running the simulation. It will
read the state of all previously registered instances of ParticleVector, Interaction, etc. If the
folder contains no checkpoint file required for one of those, an error occur.

Warning: Certain Plugins may not implement restarting mechanism and will not restart correctly.
Please check the documentation for the plugins.

30

Parameters folder – folder with the checkpoint files

run(niters: int, dt: float)→ None
Advance the system for a given amount of time steps.

Parameters

• niters – number of time steps to advance

• dt – time step duration

save_dependency_graph_graphml(fname: str, current: bool=True)→ None
Exports GraphML file with task graph for the current simulation time-step

Parameters

• fname – the output filename (without extension)

• current – if True, save the current non empty tasks; else, save all tasks that can exist in
a simulation

Warning: if current is set to True, this must be called after mmirheo.Mirheo.run().

setBouncer(bouncer: mirheo::Bouncer, ov: mirheo::ObjectVector, pv: mirheo::ParticleVector) →
None

Assign a Bouncer between an ObjectVector and a ParticleVector.

Parameters

• bouncer – Bouncer compatible with the object vector

• ov – the ObjectVector to be bounced on

• pv – the ParticleVector to be bounced

setIntegrator(integrator: mirheo::Integrator, pv: mirheo::ParticleVector)→ None
Set a specific Integrator to a given ParticleVector

Parameters

• integrator – the Integrator to assign

• pv – the concerned ParticleVector

setInteraction(interaction: mirheo::Interaction, pv1: mirheo::ParticleVector, pv2:
mirheo::ParticleVector)→ None

Forces between two instances of ParticleVector (they can be the same) will be computed according
to the defined interaction.

Parameters

• interaction – Interaction to apply

• pv1 – first ParticleVector

• pv2 – second ParticleVector

setWall(wall: mirheo::Wall, pv: mirheo::ParticleVector, maximum_part_travel: float=0.25)→ None
Assign a Wall bouncer to a given ParticleVector. The current implementation does not support
ObjectVector.

Parameters

• wall – the Wall surface which will bounce the particles

31

http://graphml.graphdrawing.org/

• pv – the ParticleVector to be bounced

• maximum_part_travel – maximum distance that one particle travels in one time step.
this should be as small as possible for performance reasons but large enough for correct-
ness

start_profiler(self: Mirheo)→ None
Tells nvprof to start recording timeline

stop_profiler(self: Mirheo)→ None
Tells nvprof to stop recording timeline

6.1 Unit system

Mirheo assumes all values are dimensionless. However, users may use Mirheo in combination with the pint Python
package, by defining Mirheo’s unit system using set_unit_registry:

import mirheo as mir
import pint
ureg = pint.UnitRegistry()

Define Mirheo's unit system.
ureg.define('mirL = 1 um')
ureg.define('mirT = 1 us')
ureg.define('mirM = 1e-20 kg')
mir.set_unit_registry(ureg)

dt automatically converted to 0.01, matching the value of 1e-8 s in the Mirheo unit
→˓system.
u = mir.Mirheo(..., dt=ureg('1e-8 s'), ...)

6.2 Global Simulation State

Some information about the simulation is global to all Mirheo components. They are stored in the following binded
objects:

class DomainInfo
Convert between local domain coordinates (specific to each rank) and global domain coordinates.

Methods

global_size
Size of the whole simulation domain.

global_start
Subdomain lower corner position of the current rank, in global coordinates.

global_to_local(x: real3)→ real3
Convert from global coordinates to local coordinates.

Parameters x – Position in global coordinates.

global_to_local_shift
shift to transform global coordinates to local coordinates.

32

https://pint.readthedocs.io/

is_in_subdomain(x: real3)→ bool
Returns True if the given position (in global coordinates) is inside the subdomain of the current rank, False
otherwise.

Parameters x – Position in global coordinates.

local_size
Subdomain extents of the current rank.

local_to_global(x: real3)→ real3
Convert local coordinates to global coordinates.

Parameters x – Position in local coordinates.

local_to_global_shift
shift to transform local coordinates to global coordinates.

class MirState
state of the simulation shared by all simulation objects.

Methods

current_dt
Current simulation step size dt. Note: this property is accessible only while Mirheo::run() is running.

current_step
Current simulation step.

current_time
Current simulation time.

domain_info
The DomainInfo of the current rank.

7 Particle Vectors

A ParticleVector (or PV) is a collection of particles in the simulation with identical properties. PV is the minimal
unit of particles that can be addressed by most of the processing utilities, i.e. it is possible to specify interactions
between different (or same) PVs, apply integrators, plugins, etc. to the PVs.

Each particle in the PV keeps its coordinate, velocity and force. Additional quantities may also be stored in a form
of extra channels. These quantities are usually added and used by specific handlers, and can in principle be written in
XDMF format (createDumpParticles), see more details in the Developer documentation.

A common special case of a ParticleVector is an ObjectVector (or OV). The OV is a Particle Vector with
the particles separated into groups (objects) of the same size. For example, if a single cell membrane is represented
by say 500 particles, an object vector consisting of the membranes will contain all the particles of all the membranes,
grouped by membrane. Objects are assumed to be spatially localized, so they always fully reside within a single MPI
process. OV can be used in most of the places where a regular PV can be used, and more

7.1 Reserved names

A list of name are reserved by Mirheo. When a user provides a custom channel name, it needs to be different than
these reserved fields:

33

• Reserved particle channel fields:

– “ids”

– “positions”

– “velocities”

– “__forces”

– “stresses”

– “densities”

– “old_positions”

• Reserved object channel fields:

– “ids”

– “motions”

– “old_motions”

– “com_extents”

– “area_volumes”

– “membrane_type_id”

– “areas”

– “mean_curvatures”

– “len_theta_tot”

• Reserved bisegment channel fields:

– “states”

– “energies”

– “biseg_kappa”

– “biseg_tau_l”

7.2 Summary

ChainVector() Object Vector representing chain of particles.
DataManager() A collection of channels in pinned memory.
LocalObjectVector() Object vector local data storage, additionally contains

object channels.
LocalParticleVector() Particle local data storage, composed of particle chan-

nels.
MembraneMesh() Internally used class for desctibing a triangular mesh

that can be used with the Membrane Interactions.
MembraneVector() Membrane is an Object Vector representing cell mem-

branes.
Mesh() Internally used class for describing a simple triangular

mesh
ObjectVector() Basic Object Vector.

Continued on next page

34

Table 4 – continued from previous page
ParticleVector() Basic particle vector, consists of identical disconnected

particles.
RigidCapsuleVector() RigidObjectVector specialized for capsule

shapes.
RigidCylinderVector() RigidObjectVector specialized for cylindrical

shapes.
RigidEllipsoidVector() RigidObjectVector specialized for ellipsoidal

shapes.
RigidObjectVector() Rigid Object is an Object Vector representing objects

that move as rigid bodies, with no relative displacement
against each other in an object.

RodVector() Rod Vector is an ObjectVector which reprents rod
geometries.

getReservedBisegmentChannels() Return the list of reserved channel names per bisegment
fields

getReservedObjectChannels() Return the list of reserved channel names for object
fields

getReservedParticleChannels() Return the list of reserved channel names for particle
fields

mmirheo.ParticleVectors.ChainVector

mmirheo.ParticleVectors.ObjectVector

mmirheo.ParticleVectors.MembraneVector

mmirheo.ParticleVectors.RigidObjectVector

mmirheo.ParticleVectors.RodVector

mmirheo.ParticleVectors.DataManager

mmirheo.ParticleVectors.LocalObjectVectormmirheo.ParticleVectors.LocalParticleVector

mmirheo.ParticleVectors.ParticleVector

mmirheo.ParticleVectors.RigidCapsuleVector

mmirheo.ParticleVectors.RigidCylinderVector

mmirheo.ParticleVectors.RigidEllipsoidVector

7.3 Details

class ChainVector
Bases: mmirheo.ParticleVectors.ObjectVector

Object Vector representing chain of particles.

__init__(name: str, mass: float, chain_length: int)→ None

Parameters

• name – name of the created PV

• mass – mass of a single particle

• chain_length – number of particles per chain

getCoordinates(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of coordinate for every of the N particles

Return type A list of 𝑁 × 3 reals

getForces(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

35

Returns 3 components of force for every of the N particles

Return type A list of 𝑁 × 3 reals

getVelocities(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of velocity for every of the N particles

Return type A list of 𝑁 × 3 reals

get_indices(self: ParticleVectors.ParticleVector)→ List[int]

Returns A list of unique integer particle identifiers

halo
The halo LocalObjectVector instance, the storage of halo objects.

local
The local LocalObjectVector instance, the storage of local objects.

setCoordinates(coordinates: List[real3])→ None

Parameters coordinates – A list of 𝑁 × 3 reals: 3 components of coordinate for every of
the N particles

setForces(forces: List[real3])→ None

Parameters forces – A list of 𝑁 × 3 reals: 3 components of force for every of the N particles

setVelocities(velocities: List[real3])→ None

Parameters velocities – A list of 𝑁 × 3 reals: 3 components of velocity for every of the N
particles

class DataManager
Bases: object

A collection of channels in pinned memory.

__init__()
Initialize self. See help(type(self)) for accurate signature.

class LocalObjectVector
Bases: mmirheo.ParticleVectors.LocalParticleVector

Object vector local data storage, additionally contains object channels.

__init__()
Initialize self. See help(type(self)) for accurate signature.

per_object
The DataManager that contains the object channels.

per_particle
The DataManager that contains the particle channels.

class LocalParticleVector
Bases: object

Particle local data storage, composed of particle channels.

__init__()
Initialize self. See help(type(self)) for accurate signature.

per_particle
The DataManager that contains the particle channels.

36

class MembraneMesh
Bases: mmirheo.ParticleVectors.Mesh

Internally used class for desctibing a triangular mesh that can be used with the Membrane Interactions. In con-
trast with the simple Mesh, this class precomputes some required quantities on the mesh, including connectivity
structures and stress-free quantities.

__init__(*args, **kwargs)
Overloaded function.

1. __init__(off_filename: str) -> None

Create a mesh by reading the OFF file. The stress free shape is the input initial mesh

Args: off_filename: path of the OFF file

2. __init__(off_initial_mesh: str, off_stress_free_mesh: str) -> None

Create a mesh by reading the OFF file, with a different stress free shape.

Args: off_initial_mesh: path of the OFF file : initial mesh off_stress_free_mesh: path of the
OFF file : stress-free mesh)

3. __init__(vertices: List[real3], faces: List[int3]) -> None

Create a mesh by giving coordinates and connectivity

Args: vertices: vertex coordinates faces: connectivity: one triangle per entry, each integer
corresponding to the vertex indices

4. __init__(vertices: List[real3], stress_free_vertices: List[real3], faces: List[int3]) -> None

Create a mesh by giving coordinates and connectivity, with a different stress-free shape.

Args: vertices: vertex coordinates stress_free_vertices: vertex coordinates of the stress-free
shape faces: connectivity: one triangle per entry, each integer corresponding to the vertex
indices

getFaces(self: ParticleVectors.Mesh)→ List[List[int[3]]]
returns the vertex indices for each triangle of the mesh.

getVertices(self: ParticleVectors.Mesh)→ List[List[float[3]]]
returns the vertex coordinates of the mesh.

class MembraneVector
Bases: mmirheo.ParticleVectors.ObjectVector

Membrane is an Object Vector representing cell membranes. It must have a triangular mesh associated with it
such that each particle is mapped directly onto single mesh vertex.

__init__(name: str, mass: float, mesh: ParticleVectors.MembraneMesh)→ None

Parameters

• name – name of the created PV

• mass – mass of a single particle

• mesh – MembraneMesh object

getCoordinates(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of coordinate for every of the N particles

Return type A list of 𝑁 × 3 reals

getForces(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

37

Returns 3 components of force for every of the N particles

Return type A list of 𝑁 × 3 reals

getVelocities(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of velocity for every of the N particles

Return type A list of 𝑁 × 3 reals

get_indices(self: ParticleVectors.ParticleVector)→ List[int]

Returns A list of unique integer particle identifiers

halo
The halo LocalObjectVector instance, the storage of halo objects.

local
The local LocalObjectVector instance, the storage of local objects.

setCoordinates(coordinates: List[real3])→ None

Parameters coordinates – A list of 𝑁 × 3 reals: 3 components of coordinate for every of
the N particles

setForces(forces: List[real3])→ None

Parameters forces – A list of 𝑁 × 3 reals: 3 components of force for every of the N particles

setVelocities(velocities: List[real3])→ None

Parameters velocities – A list of 𝑁 × 3 reals: 3 components of velocity for every of the N
particles

class Mesh
Bases: object

Internally used class for describing a simple triangular mesh

__init__(*args, **kwargs)
Overloaded function.

1. __init__(off_filename: str) -> None

Create a mesh by reading the OFF file

Args: off_filename: path of the OFF file

2. __init__(vertices: List[real3], faces: List[int3]) -> None

Create a mesh by giving coordinates and connectivity

Args: vertices: vertex coordinates faces: connectivity: one triangle per entry, each integer
corresponding to the vertex indices

getFaces(self: ParticleVectors.Mesh)→ List[List[int[3]]]
returns the vertex indices for each triangle of the mesh.

getVertices(self: ParticleVectors.Mesh)→ List[List[float[3]]]
returns the vertex coordinates of the mesh.

class ObjectVector
Bases: mmirheo.ParticleVectors.ParticleVector

Basic Object Vector. An Object Vector stores chunks of particles, each chunk belonging to the same object.

38

Warning: In case of interactions with other ParticleVector, the extents of the objects must be smaller
than a subdomain size. The code only issues a run time warning but it is the responsibility of the user to
ensure this condition for correctness.

__init__()
Initialize self. See help(type(self)) for accurate signature.

getCoordinates(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of coordinate for every of the N particles

Return type A list of 𝑁 × 3 reals

getForces(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of force for every of the N particles

Return type A list of 𝑁 × 3 reals

getVelocities(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of velocity for every of the N particles

Return type A list of 𝑁 × 3 reals

get_indices(self: ParticleVectors.ParticleVector)→ List[int]

Returns A list of unique integer particle identifiers

halo
The halo LocalObjectVector instance, the storage of halo objects.

local
The local LocalObjectVector instance, the storage of local objects.

setCoordinates(coordinates: List[real3])→ None

Parameters coordinates – A list of 𝑁 × 3 reals: 3 components of coordinate for every of
the N particles

setForces(forces: List[real3])→ None

Parameters forces – A list of 𝑁 × 3 reals: 3 components of force for every of the N particles

setVelocities(velocities: List[real3])→ None

Parameters velocities – A list of 𝑁 × 3 reals: 3 components of velocity for every of the N
particles

class ParticleVector
Bases: object

Basic particle vector, consists of identical disconnected particles.

__init__(name: str, mass: float)→ None

Parameters

• name – name of the created PV

• mass – mass of a single particle

getCoordinates(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of coordinate for every of the N particles

Return type A list of 𝑁 × 3 reals

39

getForces(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of force for every of the N particles

Return type A list of 𝑁 × 3 reals

getVelocities(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of velocity for every of the N particles

Return type A list of 𝑁 × 3 reals

get_indices(self: ParticleVectors.ParticleVector)→ List[int]

Returns A list of unique integer particle identifiers

halo
The halo LocalParticleVector instance, the storage of halo particles.

local
The local LocalParticleVector instance, the storage of local particles.

setCoordinates(coordinates: List[real3])→ None

Parameters coordinates – A list of 𝑁 × 3 reals: 3 components of coordinate for every of
the N particles

setForces(forces: List[real3])→ None

Parameters forces – A list of 𝑁 × 3 reals: 3 components of force for every of the N particles

setVelocities(velocities: List[real3])→ None

Parameters velocities – A list of 𝑁 × 3 reals: 3 components of velocity for every of the N
particles

class RigidCapsuleVector
Bases: mmirheo.ParticleVectors.RigidObjectVector

RigidObjectVector specialized for capsule shapes. The advantage is that it doesn’t need mesh and moment
of inertia define, as those can be computed analytically.

__init__(*args, **kwargs)
Overloaded function.

1. __init__(name: str, mass: float, object_size: int, radius: float, length: float) -> None

Args: name: name of the created PV mass: mass of a single particle object_size: number
of frozen particles per object radius: radius of the capsule length: length of the capsule
between the half balls. The total height is then “length + 2 * radius”

2. __init__(name: str, mass: float, object_size: int, radius: float, length: float, mesh: ParticleVec-
tors.Mesh) -> None

Args: name: name of the created PV mass: mass of a single particle object_size: number
of frozen particles per object radius: radius of the capsule length: length of the capsule
between the half balls. The total height is then “length + 2 * radius” mesh: Mesh object
representing the shape of the object. This is used for dump only.

getCoordinates(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of coordinate for every of the N particles

Return type A list of 𝑁 × 3 reals

getForces(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

40

Returns 3 components of force for every of the N particles

Return type A list of 𝑁 × 3 reals

getVelocities(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of velocity for every of the N particles

Return type A list of 𝑁 × 3 reals

get_indices(self: ParticleVectors.ParticleVector)→ List[int]

Returns A list of unique integer particle identifiers

halo
The halo LocalObjectVector instance, the storage of halo objects.

local
The local LocalObjectVector instance, the storage of local objects.

setCoordinates(coordinates: List[real3])→ None

Parameters coordinates – A list of 𝑁 × 3 reals: 3 components of coordinate for every of
the N particles

setForces(forces: List[real3])→ None

Parameters forces – A list of 𝑁 × 3 reals: 3 components of force for every of the N particles

setVelocities(velocities: List[real3])→ None

Parameters velocities – A list of 𝑁 × 3 reals: 3 components of velocity for every of the N
particles

class RigidCylinderVector
Bases: mmirheo.ParticleVectors.RigidObjectVector

RigidObjectVector specialized for cylindrical shapes. The advantage is that it doesn’t need mesh and
moment of inertia define, as those can be computed analytically.

__init__(*args, **kwargs)
Overloaded function.

1. __init__(name: str, mass: float, object_size: int, radius: float, length: float) -> None

Args: name: name of the created PV mass: mass of a single particle object_size: number of
frozen particles per object radius: radius of the cylinder length: length of the cylinder

2. __init__(name: str, mass: float, object_size: int, radius: float, length: float, mesh: ParticleVec-
tors.Mesh) -> None

Args: name: name of the created PV mass: mass of a single particle object_size: number
of frozen particles per object radius: radius of the cylinder length: length of the cylinder
mesh: Mesh object representing the shape of the object. This is used for dump only.

getCoordinates(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of coordinate for every of the N particles

Return type A list of 𝑁 × 3 reals

getForces(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of force for every of the N particles

Return type A list of 𝑁 × 3 reals

getVelocities(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

41

Returns 3 components of velocity for every of the N particles

Return type A list of 𝑁 × 3 reals

get_indices(self: ParticleVectors.ParticleVector)→ List[int]

Returns A list of unique integer particle identifiers

halo
The halo LocalObjectVector instance, the storage of halo objects.

local
The local LocalObjectVector instance, the storage of local objects.

setCoordinates(coordinates: List[real3])→ None

Parameters coordinates – A list of 𝑁 × 3 reals: 3 components of coordinate for every of
the N particles

setForces(forces: List[real3])→ None

Parameters forces – A list of 𝑁 × 3 reals: 3 components of force for every of the N particles

setVelocities(velocities: List[real3])→ None

Parameters velocities – A list of 𝑁 × 3 reals: 3 components of velocity for every of the N
particles

class RigidEllipsoidVector
Bases: mmirheo.ParticleVectors.RigidObjectVector

RigidObjectVector specialized for ellipsoidal shapes. The advantage is that it doesn’t need mesh and
moment of inertia define, as those can be computed analytically.

__init__(*args, **kwargs)
Overloaded function.

1. __init__(name: str, mass: float, object_size: int, semi_axes: real3) -> None

Args: name: name of the created PV mass: mass of a single particle object_size: number of
frozen particles per object semi_axes: ellipsoid principal semi-axes

2. __init__(name: str, mass: float, object_size: int, semi_axes: real3, mesh: ParticleVectors.Mesh) ->
None

Args: name: name of the created PV mass: mass of a single particle object_size: number
of frozen particles per object radius: radius of the cylinder semi_axes: ellipsoid principal
semi-axes mesh: Mesh object representing the shape of the object. This is used for dump
only.

getCoordinates(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of coordinate for every of the N particles

Return type A list of 𝑁 × 3 reals

getForces(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of force for every of the N particles

Return type A list of 𝑁 × 3 reals

getVelocities(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of velocity for every of the N particles

Return type A list of 𝑁 × 3 reals

42

get_indices(self: ParticleVectors.ParticleVector)→ List[int]

Returns A list of unique integer particle identifiers

halo
The halo LocalObjectVector instance, the storage of halo objects.

local
The local LocalObjectVector instance, the storage of local objects.

setCoordinates(coordinates: List[real3])→ None

Parameters coordinates – A list of 𝑁 × 3 reals: 3 components of coordinate for every of
the N particles

setForces(forces: List[real3])→ None

Parameters forces – A list of 𝑁 × 3 reals: 3 components of force for every of the N particles

setVelocities(velocities: List[real3])→ None

Parameters velocities – A list of 𝑁 × 3 reals: 3 components of velocity for every of the N
particles

class RigidObjectVector
Bases: mmirheo.ParticleVectors.ObjectVector

Rigid Object is an Object Vector representing objects that move as rigid bodies, with no relative displacement
against each other in an object. It must have a triangular mesh associated with it that defines the shape of the
object.

__init__(name: str, mass: float, inertia: real3, object_size: int, mesh: ParticleVectors.Mesh) →
None

Parameters

• name – name of the created PV

• mass – mass of a single particle

• inertia – moment of inertia of the body in its principal axes. The principal axes of the
mesh are assumed to be aligned with the default global OXYZ axes

• object_size – number of frozen particles per object

• mesh – Mesh object used for bounce back and dump

getCoordinates(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of coordinate for every of the N particles

Return type A list of 𝑁 × 3 reals

getForces(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of force for every of the N particles

Return type A list of 𝑁 × 3 reals

getVelocities(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of velocity for every of the N particles

Return type A list of 𝑁 × 3 reals

get_indices(self: ParticleVectors.ParticleVector)→ List[int]

Returns A list of unique integer particle identifiers

43

halo
The halo LocalObjectVector instance, the storage of halo objects.

local
The local LocalObjectVector instance, the storage of local objects.

setCoordinates(coordinates: List[real3])→ None

Parameters coordinates – A list of 𝑁 × 3 reals: 3 components of coordinate for every of
the N particles

setForces(forces: List[real3])→ None

Parameters forces – A list of 𝑁 × 3 reals: 3 components of force for every of the N particles

setVelocities(velocities: List[real3])→ None

Parameters velocities – A list of 𝑁 × 3 reals: 3 components of velocity for every of the N
particles

class RodVector
Bases: mmirheo.ParticleVectors.ObjectVector

Rod Vector is an ObjectVector which reprents rod geometries.

__init__(name: str, mass: float, num_segments: int)→ None

Parameters

• name – name of the created Rod Vector

• mass – mass of a single particle

• num_segments – number of elements to discretize the rod

getCoordinates(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of coordinate for every of the N particles

Return type A list of 𝑁 × 3 reals

getForces(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of force for every of the N particles

Return type A list of 𝑁 × 3 reals

getVelocities(self: ParticleVectors.ParticleVector)→ List[List[float[3]]]

Returns 3 components of velocity for every of the N particles

Return type A list of 𝑁 × 3 reals

get_indices(self: ParticleVectors.ParticleVector)→ List[int]

Returns A list of unique integer particle identifiers

halo
The halo LocalObjectVector instance, the storage of halo objects.

local
The local LocalObjectVector instance, the storage of local objects.

setCoordinates(coordinates: List[real3])→ None

Parameters coordinates – A list of 𝑁 × 3 reals: 3 components of coordinate for every of
the N particles

setForces(forces: List[real3])→ None

44

Parameters forces – A list of 𝑁 × 3 reals: 3 components of force for every of the N particles

setVelocities(velocities: List[real3])→ None

Parameters velocities – A list of 𝑁 × 3 reals: 3 components of velocity for every of the N
particles

getReservedBisegmentChannels()→ List[str]
Return the list of reserved channel names per bisegment fields

getReservedObjectChannels()→ List[str]
Return the list of reserved channel names for object fields

getReservedParticleChannels()→ List[str]
Return the list of reserved channel names for particle fields

8 Initial conditions

Initial conditions create the distribution of the particles or objects at the beginning of any simulation. Several variants
include random placement, reading ICs from Python or restarting from the previous state

8.1 Summary

FromArray() Set particles according to given position and velocity
arrays.

InitialConditions() Base class for initial conditions
Membrane() Can only be used with Membrane Object Vector, see

Initial conditions.
MembraneWithTypeId() Same as Membrane with an additional type id field

which distinguish membranes with different properties.
RandomChains() Creates chains of particles with random shapes at pre-

scribed positions.
Restart() Read the state of the particle vector from restart files.
Rigid() Can only be used with Rigid Object Vector or Rigid El-

lipsoid, see Initial conditions.
Rod() Can only be used with Rod Vector.
StraightChains() Creates chains of particles of the same orientations and

lengths at prescribed positions.
Uniform() The particles will be generated with the desired number

density uniformly at random in all the domain.
UniformFiltered() The particles will be generated with the desired number

density uniformly at random in all the domain and then
filtered out by the given filter.

UniformSphere() The particles will be generated with the desired number
density uniformly at random inside or outside a given
sphere.

8.2 Details

class FromArray
Bases: mmirheo.InitialConditions.InitialConditions

Set particles according to given position and velocity arrays.

45

__init__(pos: List[real3], vel: List[real3])→ None

Parameters

• pos – array of positions

• vel – array of velocities

class InitialConditions
Bases: object

Base class for initial conditions

__init__()
Initialize self. See help(type(self)) for accurate signature.

class Membrane
Bases: mmirheo.InitialConditions.InitialConditions

Can only be used with Membrane Object Vector, see Initial conditions. These IC will initialize the particles
of each object according to the mesh associated with Membrane, and then the objects will be translated/rotated
according to the provided initial conditions.

__init__(com_q: List[ComQ], global_scale: float=1.0)→ None

Parameters

• com_q – List describing location and rotation of the created objects. One entry in the
list corresponds to one object created. Each entry consist of 7 reals: <com_x> <com_y>
<com_z> <q_x> <q_y> <q_z> <q_w>, where com is the center of mass of the object, q
is the quaternion of its rotation, not necessarily normalized

• global_scale – All the membranes will be scaled by that value. Useful to implement
membranes growth so that they can fill the space with high volume fraction

class MembraneWithTypeId
Bases: mmirheo.InitialConditions.Membrane

Same as Membrane with an additional type id field which distinguish membranes with different properties.
This is may be used with MembraneForces with the corresponding filter.

__init__(com_q: List[ComQ], type_ids: List[int], global_scale: float=1.0)→ None

Parameters

• com_q – List describing location and rotation of the created objects. One entry in the
list corresponds to one object created. Each entry consist of 7 reals: <com_x> <com_y>
<com_z> <q_x> <q_y> <q_z> <q_w>, where com is the center of mass of the object, q
is the quaternion of its rotation, not necessarily normalized

• type_ids – list of type ids. Each entry corresponds to the id of the group to which the
corresponding membrane belongs.

• global_scale – All the membranes will be scaled by that value. Useful to implement
membranes growth so that they can fill the space with high volume fraction

class RandomChains
Bases: mmirheo.InitialConditions.InitialConditions

Creates chains of particles with random shapes at prescribed positions. Each chain is generated by a random
walk with a constant step size.

__init__(positions: List[real3], length: float)→ None

Parameters

46

• positions – center of mass of each chain

• length – length of the chains.

class Restart
Bases: mmirheo.InitialConditions.InitialConditions

Read the state of the particle vector from restart files.

__init__(path: str=’restart/’)→ None

Parameters path – folder where the restart files reside.

class Rigid
Bases: mmirheo.InitialConditions.InitialConditions

Can only be used with Rigid Object Vector or Rigid Ellipsoid, see Initial conditions. These IC will initialize
the particles of each object according to the template .xyz file and then the objects will be translated/rotated
according to the provided initial conditions.

__init__(*args, **kwargs)
Overloaded function.

1. __init__(com_q: List[ComQ], xyz_filename: str) -> None

Args:

com_q: List describing location and rotation of the created objects. One entry in the list
corresponds to one object created. Each entry consist of 7 reals: <com_x> <com_y>
<com_z> <q_x> <q_y> <q_z> <q_w>, where com is the center of mass of the object,
q is the quaternion of its rotation, not necessarily normalized

xyz_filename: Template that describes the positions of the body particles before transla-
tion or rotation is applied. Standard .xyz file format is used with first line being the
number of particles, second comment, third and onwards - particle coordinates. The
number of particles in the file must be the same as in number of particles per object in
the corresponding PV

2. __init__(com_q: List[ComQ], coords: List[real3]) -> None

Args:

com_q: List describing location and rotation of the created objects. One entry in the list
corresponds to one object created. Each entry consist of 7 reals: <com_x> <com_y>
<com_z> <q_x> <q_y> <q_z> <q_w>, where com is the center of mass of the object,
q is the quaternion of its rotation, not necessarily normalized

coords: Template that describes the positions of the body particles before translation or
rotation is applied. The number of coordinates must be the same as in number of parti-
cles per object in the corresponding PV

3. __init__(com_q: List[ComQ], coords: List[real3], init_vels: List[real3]) -> None

Args:

com_q: List describing location and rotation of the created objects. One entry in the list
corresponds to one object created. Each entry consist of 7 reals: <com_x> <com_y>
<com_z> <q_x> <q_y> <q_z> <q_w>, where com is the center of mass of the object,
q is the quaternion of its rotation, not necessarily normalized

coords: Template that describes the positions of the body particles before translation or
rotation is applied. The number of coordinates must be the same as in number of parti-
cles per object in the corresponding PV

47

com_q: List specifying initial Center-Of-Mass velocities of the bodies. One entry (list of
3 reals) in the list corresponds to one object

class Rod
Bases: mmirheo.InitialConditions.InitialConditions

Can only be used with Rod Vector. These IC will initialize the particles of each rod according to the the given
explicit center-line position aand torsion mapping and then the objects will be translated/rotated according to
the provided initial conditions.

__init__(com_q: List[ComQ], center_line: Callable[[float], real3], torsion: Callable[[float], float],
a: float, initial_frame: real3=real3(inf, inf, inf))→ None

Parameters

• com_q – List describing location and rotation of the created objects. One entry in the
list corresponds to one object created. Each entry consist of 7 reals: <com_x> <com_y>
<com_z> <q_x> <q_y> <q_z> <q_w>, where com is the center of mass of the object, q
is the quaternion of its rotation, not necessarily normalized

• center_line – explicit mapping r : [0, 1] → 𝑅3. Assume |𝑟′(𝑠)| is constant for all
𝑠 ∈ [0, 1].

• torsion – explicit mapping 𝜏 : [0, 1] → 𝑅.

• a – width of the rod

• initial_frame – Orientation of the initial frame (optional) By default, will come up
with any orthogonal frame to the rod at origin

class StraightChains
Bases: mmirheo.InitialConditions.InitialConditions

Creates chains of particles of the same orientations and lengths at prescribed positions.

__init__(positions: List[real3], orientations: List[real3], length: float)→ None

Parameters

• positions – center of mass of each chain

• orientations – array of unit vectors indicating the orientation of the chains

• length – length of the chains.

class Uniform
Bases: mmirheo.InitialConditions.InitialConditions

The particles will be generated with the desired number density uniformly at random in all the domain. These
IC may be used with any Particle Vector, but only make sense for regular PV.

__init__(number_density: float)→ None

Parameters number_density – target number density

class UniformFiltered
Bases: mmirheo.InitialConditions.InitialConditions

The particles will be generated with the desired number density uniformly at random in all the domain and then
filtered out by the given filter. These IC may be used with any Particle Vector, but only make sense for regular
PV.

__init__(number_density: float, filter: Callable[[real3], bool])→ None

Parameters

• number_density – target number density

48

• filter – given position, returns True if the particle should be kept

class UniformSphere
Bases: mmirheo.InitialConditions.InitialConditions

The particles will be generated with the desired number density uniformly at random inside or outside a given
sphere. These IC may be used with any Particle Vector, but only make sense for regular PV.

__init__(number_density: float, center: real3, radius: float, inside: bool)→ None

Parameters

• number_density – target number density

• center – center of the sphere

• radius – radius of the sphere

• inside – whether the particles should be inside or outside the sphere

9 Object belonging checkers

Object belonging checkers serve two purpooses:

1. Split a ParticleVector into two disjointed parts (possibly forming a new Particle Vector): the particles that
are inside any object of the given ObjectVector and the particles that are outside.

2. Maintain the mentioned inside-outside property of the particles in the resulting ParticleVectors. Such
maintenance is performed periodically, and the particles of, e.g. inner PV that appear to mistakingly be outside
of the reference ObjectVector will be moved to the outer PV (and viceversa). If one of the PVs was specified
as “none”, the erroneous particles will be deleted from the simulation.

See also Mirheo.registerObjectBelongingChecker and Mirheo.
applyObjectBelongingChecker.

9.1 Summary

BelongingChecker() Base class for checking if particles belong to objects
Capsule() This checker will use the analytical representation of the

capsule to detect inside-outside status.
Cylinder() This checker will use the analytical representation of the

cylinder to detect inside-outside status.
Ellipsoid() This checker will use the analytical representation of the

ellipsoid to detect inside-outside status.
Mesh() This checker will use the triangular mesh associated

with objects to detect inside-outside status.
Rod() This checker will detect inside-outside status with re-

spect to every segment of the rod, enlarged by a given
radius.

9.2 Details

class BelongingChecker
Bases: object

Base class for checking if particles belong to objects

49

__init__()
Initialize self. See help(type(self)) for accurate signature.

class Capsule
Bases: mmirheo.BelongingCheckers.BelongingChecker

This checker will use the analytical representation of the capsule to detect inside-outside status.

__init__(name: str)→ None

Parameters name – name of the checker

class Cylinder
Bases: mmirheo.BelongingCheckers.BelongingChecker

This checker will use the analytical representation of the cylinder to detect inside-outside status.

__init__(name: str)→ None

Parameters name – name of the checker

class Ellipsoid
Bases: mmirheo.BelongingCheckers.BelongingChecker

This checker will use the analytical representation of the ellipsoid to detect inside-outside status.

__init__(name: str)→ None

Parameters name – name of the checker

class Mesh
Bases: mmirheo.BelongingCheckers.BelongingChecker

This checker will use the triangular mesh associated with objects to detect inside-outside status.

__init__(name: str)→ None

Parameters name – name of the checker

class Rod
Bases: mmirheo.BelongingCheckers.BelongingChecker

This checker will detect inside-outside status with respect to every segment of the rod, enlarged by a given
radius.

__init__(name: str, radius: float)→ None

Parameters

• name – name of the checker

• radius – radius of the rod

10 Integrators

Integrators are used to advance particle coordinates and velocities in time according to forces acting on them.

10.1 Summary

Integrator() Base integration class
Minimize() Energy minimization integrator.

Continued on next page

50

Table 7 – continued from previous page
Oscillate() Move particles with the periodically changing velocity

u(𝑡) = cos(2𝜋 𝑡/𝑇)u0

RigidVelocityVerlet() Integrate the position and rotation (in terms of quater-
nions) of the rigid bodies as per Velocity-Verlet scheme.

Rotate() Rotate particles around the specified point in space with
a constant angular velocity Ω

SubStep() Takes advantage of separation of time scales between
“fast” internal forces and other “slow” forces on an ob-
ject vector.

SubStepShardlowSweep() Takes advantage of separation of time scales between
“fast” internal forces and other “slow” forces on a mem-
brane vector.

Translate() Translate particles with a constant velocity u regardless
forces acting on them.

VelocityVerlet() Classical Velocity-Verlet integrator with fused steps for
coordinates and velocities.

VelocityVerlet_withConstForce() Same as regular VelocityVerlet, but the forces on
all the particles are modified with the constant pressure
term:

VelocityVerlet_withPeriodicForce() Same as regular Velocity-Verlet, but the forces on all the
particles are modified with periodic Poiseuille term.

10.2 Details

class Integrator
Bases: object

Base integration class

__init__()
Initialize self. See help(type(self)) for accurate signature.

class Minimize
Bases: mmirheo.Integrators.Integrator

Energy minimization integrator. Updates particle positions according to a gradient-descent policy with respect
to the energy potential (force). Does not read or modify particle velocities.

a𝑛 =
1

𝑚
F(x𝑛,v𝑛−1/2)

x𝑛+1 = x𝑛 +
∆𝑡2

𝑚
a𝑛

__init__(name: str, max_displacement: float)→ None

Parameters

• name – name of the integrator

• max_displacement – maximum displacement per time step

class Oscillate
Bases: mmirheo.Integrators.Integrator

Move particles with the periodically changing velocity u(𝑡) = cos(2𝜋 𝑡/𝑇)u0

__init__(name: str, velocity: real3, period: float)→ None

51

Parameters

• name – name of the integrator

• velocity – u0

• period – oscillation period 𝑇

class RigidVelocityVerlet
Bases: mmirheo.Integrators.Integrator

Integrate the position and rotation (in terms of quaternions) of the rigid bodies as per Velocity-Verlet scheme.
Can only applied to RigidObjectVector or RigidEllipsoidVector.

__init__(name: str)→ None

Parameters name – name of the integrator

class Rotate
Bases: mmirheo.Integrators.Integrator

Rotate particles around the specified point in space with a constant angular velocity Ω

__init__(name: str, center: real3, omega: real3)→ None

Parameters

• name – name of the integrator

• center – point around which to rotate

• omega – angular velocity Ω

class SubStep
Bases: mmirheo.Integrators.Integrator

Takes advantage of separation of time scales between “fast” internal forces and other “slow” forces on an object
vector. This integrator advances the object vector with constant slow forces for ‘substeps’ sub time steps. The
fast forces are updated after each sub step. Positions and velocity are updated using an internal velocity verlet
integrator.

__init__(name: str, substeps: int, fastForces: List[Interactions.Interaction])→ None

Parameters

• name – name of the integrator

• substeps – number of sub steps

• fastForces – a list of fast interactions. Only accepts MembraneForces or
RodForces

Warning: The interaction will be set to the required object vector when setting this integrator to the
object vector. Hence the interaction needs not to be set explicitely to the OV.

class SubStepShardlowSweep
Bases: mmirheo.Integrators.Integrator

Takes advantage of separation of time scales between “fast” internal forces and other “slow” forces on a mem-
brane vector. This integrator advances the object vector with constant slow forces for ‘substeps’ sub time steps.
The fast forces are updated after each sub step using the Shardlow method for viscous forces with multiple
seeps.

52

__init__(name: str, substeps: int, fastForces: Interactions.MembraneForces, gammaC: float, kBT:
float, nsweeps: int)→ None

Parameters

• name – Name of the integrator.

• substeps – Number of sub steps.

• fastForces – Membrane interactions. Only accepts MembraneForces. Must have
zero gammaC and zero kBT.

• gammaC – Membrane viscous coefficient.

• kBT – temperature, in energy units. Set to zero to disable membrane fluctuations.

• nsweeps – Number of sweeps for the semi implicit step. Must be strictly more than 0.

Warning: The interaction will be set to the required object vector when setting this integrator to the
object vector. Hence the interaction needs not to be set explicitely to the OV.

class Translate
Bases: mmirheo.Integrators.Integrator

Translate particles with a constant velocity u regardless forces acting on them.

__init__(name: str, velocity: real3)→ None

Parameters

• name – name of the integrator

• velocity – translational velocity Ω

class VelocityVerlet
Bases: mmirheo.Integrators.Integrator

Classical Velocity-Verlet integrator with fused steps for coordinates and velocities. The velocities are shifted
with respect to the coordinates by one half of the time-step

a𝑛 =
1

𝑚
F(x𝑛,v𝑛−1/2)

v𝑛+1/2 = v𝑛−1/2 + a𝑛∆𝑡

x𝑛+1 = x𝑛 + v𝑛+1/2∆𝑡

where bold symbol means a vector, 𝑚 is a particle mass, and superscripts denote the time: x𝑘 = x(𝑘 ∆𝑡)

__init__(name: str)→ None

Parameters name – name of the integrator

class VelocityVerlet_withConstForce
Bases: mmirheo.Integrators.Integrator

Same as regular VelocityVerlet, but the forces on all the particles are modified with the constant pressure
term:

a𝑛 =
1

𝑚

(︁
F(x𝑛,v𝑛−1/2) + F𝑒𝑥𝑡𝑟𝑎

)︁

__init__(name: str, force: real3)→ None

53

Parameters

• name – name of the integrator

• force – F𝑒𝑥𝑡𝑟𝑎

class VelocityVerlet_withPeriodicForce
Bases: mmirheo.Integrators.Integrator

Same as regular Velocity-Verlet, but the forces on all the particles are modified with periodic Poiseuille term.
This means that all the particles in half domain along certain axis (Ox, Oy or Oz) are pushed with force
𝐹𝑃𝑜𝑖𝑠𝑒𝑢𝑖𝑙𝑙𝑒 parallel to Oy, Oz or Ox correspondingly, and the particles in another half of the domain are pushed
in the same direction with force −𝐹𝑃𝑜𝑖𝑠𝑒𝑢𝑖𝑙𝑙𝑒

__init__(name: str, force: float, direction: str)→ None

Parameters

• name – name of the integrator

• force – force magnitude, 𝐹𝑃𝑜𝑖𝑠𝑒𝑢𝑖𝑙𝑙𝑒

• direction – Valid values: “x”, “y”, “z”. Defines the direction of the pushing force if
direction is “x”, the sign changes along “y”. if direction is “y”, the sign changes along “z”.
if direction is “z”, the sign changes along “x”.

11 Interactions

Interactions are used to calculate forces on individual particles due to their neighbours. Pairwise short-range interac-
tions are currently supported, and membrane forces.

11.1 Summary

ChainFENE() FENE forces between beads of a ChainVector.
Interaction() Base interaction class
MembraneForces() Abstract class for membrane interactions.
ObjBinding() Forces attaching a ParticleVector to another via

harmonic potentials between the particles of specific
pairs.

ObjRodBinding() Forces attaching a RodVector to a
RigidObjectVector.

Pairwise() Generic pairwise interaction class.
RodForces() Forces acting on an elastic rod.

11.2 Details

class ChainFENE
Bases: mmirheo.Interactions.Interaction

FENE forces between beads of a ChainVector.

__init__(name: str, ks: float, rmax: float, stress_period: Optional[float]=None)→ None

Parameters

• name – name of the interaction

54

• ks – the spring constant

• rmax – maximal extension of the springs

• stress_period – if set, compute the stresses on particles at this given period, in sim-
ulation time.

class Interaction
Bases: object

Base interaction class

__init__()
Initialize self. See help(type(self)) for accurate signature.

class MembraneForces
Bases: mmirheo.Interactions.Interaction

Abstract class for membrane interactions. Mesh-based forces acting on a membrane according to the model in
[Fedosov2010]

The membrane interactions are composed of forces comming from:

• bending of the membrane, potential 𝑈𝑏

• shear elasticity of the membrane, potential 𝑈𝑠

• constraint: area conservation of the membrane (local and global), potential 𝑈𝐴

• constraint: volume of the cell (assuming incompressible fluid), potential 𝑈𝑉

• membrane viscosity, pairwise force F𝑣

• membrane fluctuations, pairwise force F𝑅

The form of the constraint potentials are given by (see [Fedosov2010] for more explanations):

𝑈𝐴 =
𝑘𝑎(𝐴𝑡𝑜𝑡 −𝐴0

𝑡𝑜𝑡)
2

2𝐴0
𝑡𝑜𝑡

+
∑︁

𝑗∈1...𝑁𝑡

𝑘𝑑(𝐴𝑗 −𝐴0)2

2𝐴0
,

𝑈𝑉 =
𝑘𝑣(𝑉 − 𝑉 0

𝑡𝑜𝑡)
2

2𝑉 0
𝑡𝑜𝑡

.

The viscous and dissipation forces are central forces and are the same as DPD interactions with 𝑤(𝑟) = 1 (no
cutoff radius, applied to each bond).

Several bending models are implemented. First, the Kantor enrgy reads (see [kantor1987]):

𝑈𝑏 =
∑︁

𝑗∈1...𝑁𝑠

𝑘𝑏 [1 − cos(𝜃𝑗 − 𝜃0)] .

The Juelicher energy is (see [Juelicher1996]):

𝑈𝑏 = 2𝑘𝑏

𝑁𝑣∑︁
𝛼=1

(𝑀𝛼 − 𝐶0)
2

𝐴𝛼
,

𝑀𝛼 =
1

4

(𝛼)∑︁
<𝑖,𝑗>

𝑙𝑖𝑗𝜃𝑖𝑗 .

It is improved with the area-difference model (see [Bian2020]), which is a discretized version of:

𝑈𝐴𝐷 =
𝑘𝐴𝐷𝜋

2𝐷2
0𝐴0

(∆𝐴− ∆𝐴0)
2
.

55

Currently, the stretching and shear energy models are:

WLC model:

𝑈𝑠 =
∑︁

𝑗∈1...𝑁𝑠

[︃
𝑘𝑠𝑙𝑚

(︀
3𝑥2

𝑗 − 2𝑥3
𝑗

)︀
4(1 − 𝑥𝑗)

+
𝑘𝑝
𝑙0

]︃
.

Lim model: an extension of the Skalak shear energy (see [Lim2008]).

𝑈𝐿𝑖𝑚 =

𝑁𝑡∑︁
𝑖=1

(𝐴0)𝑖

(︂
𝑘𝑎
2

(︀
𝛼2
𝑖 + 𝑎3𝛼

3
𝑖 + 𝑎4𝛼

4
𝑖

)︀
+ 𝜇

(︀
𝛽𝑖 + 𝑏1𝛼𝑖𝛽𝑖 + 𝑏2𝛽

2
𝑖

)︀
),

where 𝛼 and 𝛽 are the invariants of the strains.

__init__(name: str, shear_desc: str, bending_desc: str, filter_desc: str=’keep_all’, stress_free:
bool=False, **kwargs)→ None

Parameters

• name – name of the interaction

• shear_desc – a string describing what shear force is used

• bending_desc – a string describing what bending force is used

• filter_desc – a string describing which membranes are concerned

• stress_free – if True, stress Free shape is used for the shear parameters

kwargs:

• tot_area: total area of the membrane at equilibrium

• tot_volume: total volume of the membrane at equilibrium

• ka_tot: constraint energy for total area

• kv_tot: constraint energy for total volume

• kBT: fluctuation temperature (set to zero will switch off fluctuation forces)

• gammaC: dissipative forces coefficient

• initial_length_fraction: the size of the membrane increases linearly in time from this fraction of the
provided mesh to its full size after grow_until time; the parameters are scaled accordingly with time.
If this is set, grow_until must also be provided. Default value: 1.

• grow_until: the size increases linearly in time from a fraction of the provided mesh to its full size
after that time; the parameters are scaled accordingly with time. If this is set, initial_length_fraction
must also be provided. Default value: 0

Shear Parameters, warm like chain model (set shear_desc = ‘wlc’):

• x0: 𝑥0

• ks: energy magnitude for bonds

• mpow: 𝑚

• ka: energy magnitude for local area

Shear Parameters, Lim model (set shear_desc = ‘Lim’):

• ka: 𝑘𝑎, magnitude of stretching force

56

• mu: 𝜇, magnitude of shear force

• a3: 𝑎3, non linear part for stretching

• a4: 𝑎4, non linear part for stretching

• b1: 𝑏1, non linear part for shear

• b2: 𝑏2, non linear part for shear

Bending Parameters, Kantor model (set bending_desc = ‘Kantor’):

• kb: local bending energy magnitude

• theta: spontaneous angle

Bending Parameters, Juelicher model (set bending_desc = ‘Juelicher’):

• kb: local bending energy magnitude

• C0: spontaneous curvature

• kad: area difference energy magnitude

• DA0: area difference at relaxed state divided by the offset of the leaflet midplanes

filter_desc = “keep_all”:

The interaction will be applied to all membranes

filter_desc = “by_type_id”:

The interaction will be applied membranes with a given type_id (see MembraneWithTypeId)

• type_id: the type id that the interaction applies to

class ObjBinding
Bases: mmirheo.Interactions.Interaction

Forces attaching a ParticleVector to another via harmonic potentials between the particles of specific
pairs.

Warning: To deal with MPI, the force is zero if two particles of a pair are apart from more than half the
subdomain size. Since this interaction is designed to bind objects to each other, this should not happen under
normal conditions.

__init__(name: str, k_bound: float, pairs: List[int2])→ None

Parameters

• name – Name of the interaction.

• k_bound – Spring force coefficient.

• pairs – The global Ids of the particles that will interact through the harmonic poten-
tial. For each pair, the first entry is the id of pv1 while the second is that of pv2 (see
setInteraction).

class ObjRodBinding
Bases: mmirheo.Interactions.Interaction

Forces attaching a RodVector to a RigidObjectVector.

__init__(name: str, torque: float, rel_anchor: real3, k_bound: float)→ None

Parameters

57

• name – name of the interaction

• torque – torque magnitude to apply to the rod

• rel_anchor – position of the anchor relative to the rigid object

• k_bound – anchor harmonic potential magnitude

class Pairwise
Bases: mmirheo.Interactions.Interaction

Generic pairwise interaction class. Can be applied between any kind of ParticleVector classes. The
following interactions are currently implemented:

• DPD: Pairwise interaction with conservative part and dissipative + random part acting as a thermostat,
see [Groot1997]

F𝑖𝑗 =
(︀
F𝐶

𝑖𝑗 + F𝐷
𝑖𝑗 + F𝑅

𝑖𝑗

)︀
r̂

𝐹𝐶
𝑖𝑗 =

{︃
𝑎(1 − 𝑟

𝑟𝑐
), 𝑟 < 𝑟𝑐

0, 𝑟 > 𝑟𝑐

𝐹𝐷
𝑖𝑗 = −𝛾𝑤2(𝑟

𝑟𝑐
)(r̂ · u)

𝐹𝑅
𝑖𝑗 = 𝜎𝑤(𝑟

𝑟𝑐
)

𝜃√
∆𝑡

where bold symbol means a vector, its regular counterpart means vector length: 𝑥 = ‖x‖, hat-ed
symbol is the normalized vector: x̂ = x/ ‖x‖. Moreover, 𝜃 is the random variable with zero mean
and unit variance, that is distributed independently of the interacting pair i-j, dissipation and random
forces are related by the fluctuation-dissipation theorem: 𝜎2 = 2𝛾 𝑘𝐵𝑇 ; and 𝑤(𝑟) is the weight
function that we define as follows:

𝑤(𝑟) =

{︃
(1 − 𝑟)𝑝, 𝑟 < 1

0, 𝑟 > 1

• MDPD: Compute MDPD interaction as described in [Warren2003]. Must be used together with “Density”
interaction with kernel “MDPD”.

The interaction forces are the same as described in “DPD” with the modified conservative term

𝐹𝐶
𝑖𝑗 = 𝑎𝑤𝑐(𝑟𝑖𝑗) + 𝑏(𝜌𝑖 + 𝜌𝑗)𝑤𝑑(𝑟𝑖𝑗),

where 𝜌𝑖 is computed from “Density” and

𝑤𝑐(𝑟) =

{︃
(1 − 𝑟

𝑟𝑐
), 𝑟 < 𝑟𝑐

0, 𝑟 > 𝑟𝑐

𝑤𝑑(𝑟) =

{︃
(1 − 𝑟

𝑟𝑑
), 𝑟 < 𝑟𝑑

0, 𝑟 > 𝑟𝑑

• SDPD: Compute SDPD interaction with angular momentum conservation, following [Hu2006] and

58

[Bian2012]. Must be used together with “Density” interaction with the same density kernel.

F𝑖𝑗 =
(︀
𝐹𝐶
𝑖𝑗 + 𝐹𝐷

𝑖𝑗 + 𝐹𝑅
𝑖𝑗

)︀
𝐹𝐶
𝑖𝑗 = −

(︃
𝑝𝑖
𝑑2𝑖

+
𝑝𝑗
𝑑2𝑗

)︃
𝜕𝑤𝜌

𝜕𝑟𝑖𝑗
,

𝐹𝐷
𝑖𝑗 = −𝜂

[︃(︃
1

𝑑2𝑖
+

1

𝑑2𝑗

)︃
−𝜁

𝑟𝑖𝑗

𝜕𝑤𝜌

𝜕𝑟𝑖𝑗

]︃
(v𝑖𝑗 · e𝑖𝑗) ,

𝐹𝑅
𝑖𝑗 =

√︀
2𝑘𝐵𝑇𝜂

[︃(︃
1

𝑑2𝑖
+

1

𝑑2𝑗

)︃
−𝜁

𝑟𝑖𝑗

𝜕𝑤𝜌

𝜕𝑟𝑖𝑗

]︃ 1
2

𝜉𝑖𝑗 ,

where 𝜂 is the viscosity, 𝑤𝜌 is the density kernel, 𝜁 = 2 + 𝑑 = 5, 𝑑𝑖 is the density of particle i and
𝑝𝑖 = 𝑝(𝑑𝑖) is the pressure of particle i.. The available density kernels are listed in “Density”. The
available equations of state (EOS) are:

Linear equation of state:

𝑝(𝜌) = 𝑐2𝑆 (𝜌− 𝜌0)

where 𝑐𝑆 is the speed of sound and 𝜌0 is a parameter.

Quasi incompressible EOS:

𝑝(𝜌) = 𝑝0

[︂(︂
𝜌

𝜌𝑟

)︂𝛾

− 1

]︂
,

where 𝑝0, 𝜌𝑟 and 𝛾 = 7 are parameters to be fitted to the desired fluid.

• LJ: Pairwise interaction according to the classical Lennard-Jones potential

F𝑖𝑗 = 24𝜖

(︃
2

(︂
𝜎

𝑟𝑖𝑗

)︂12

−
(︂

𝜎

𝑟𝑖𝑗

)︂6
)︃

r

𝑟2

As opposed to RepulsiveLJ, the force is not bounded from either sides.

• RepulsiveLJ: Pairwise interaction according to the classical Lennard-Jones potential, truncated such that
it is always repulsive.

F𝑖𝑗 = max

[︃
0.0, 24𝜖

(︃
2

(︂
𝜎

𝑟𝑖𝑗

)︂12

−
(︂

𝜎

𝑟𝑖𝑗

)︂6
)︃

r

𝑟2

]︃

Note that in the implementation, the force is bounded for stability at larger time steps.

• GrowingRepulsiveLJ: Same as RepulsiveLJ, but the length scale is growing linearly in time until a
prespecified time, from a specified fraction to 1. This is useful when growing membranes while
avoiding overlaps.

• Morse: Pairwise interaction according to the classical Morse potential

F𝑖𝑗 = 2𝐷𝑒𝛽
(︁
𝑒2𝛽(𝑟0−𝑟) − 𝑒𝛽(𝑟0−𝑟)

)︁ r

𝑟
,

where 𝑟 is the distance between the particles.

59

https://en.wikipedia.org/wiki/Lennard-Jones_potential
https://en.wikipedia.org/wiki/Lennard-Jones_potential
https://en.wikipedia.org/wiki/Morse_potential

• Density: Compute density of particles with a given kernel.

𝜌𝑖 =
∑︁
𝑗 ̸=𝑖

𝑤𝜌(𝑟𝑖𝑗)

where the summation goes over the neighbours of particle 𝑖 within a cutoff range of 𝑟𝑐. The imple-
mented densities are listed below:

– kernel “MDPD”:

see [Warren2003]

𝑤𝜌(𝑟) =

⎧⎨⎩ 15
2𝜋𝑟3𝑑

(︁
1 − 𝑟

𝑟𝑑

)︁2
, 𝑟 < 𝑟𝑑

0, 𝑟 > 𝑟𝑑

– kernel “WendlandC2”:

𝑤𝜌(𝑟) =
21

2𝜋𝑟3𝑐

(︂
1 − 𝑟

𝑟𝑐

)︂4(︂
1 + 4

𝑟

𝑟𝑐

)︂

__init__(name: str, rc: float, kind: str, **kwargs)→ None

Parameters

• name – name of the interaction

• rc – interaction cut-off (no forces between particles further than rc apart)

• kind – interaction kind (e.g. DPD). See below for all possibilities.

Create one pairwise interaction handler of kind kind. When applicable, stress computation is activated by
passing stress = True. This activates virial stress computation every stress_period time units (also passed
in kwars)

• kind = “DPD”

– a: 𝑎

– gamma: 𝛾

– kBT: 𝑘𝐵𝑇

– power: 𝑝 in the weight function

• kind = “MDPD”

– rd: 𝑟𝑑

– a: 𝑎

– b: 𝑏

– gamma: 𝛾

– kBT: temperature 𝑘𝐵𝑇

– power: 𝑝 in the weight function

• kind = “SDPD”

– viscosity: fluid viscosity

– kBT: temperature 𝑘𝐵𝑇

60

– EOS: the desired equation of state (see below)

– density_kernel: the desired density kernel (see below)

• kind = “LJ”

– epsilon: 𝜀

– sigma: 𝜎

• kind = “RepulsiveLJ”

– epsilon: 𝜀

– sigma: 𝜎

– max_force: force magnitude will be capped to not exceed max_force

– aware_mode:

* if “None”, all particles interact with each other.

* if “Object”, the particles belonging to the same object in an object vector do not interact with
each other. That restriction only applies if both Particle Vectors in the interactions are the
same and is actually an Object Vector.

* if “Rod”, the particles interact with all other particles except with the ones which are below
a given a distance (in number of segment) of the same rod vector. The distance is specified
by the kwargs parameter min_segments_distance.

• kind = “GrowingRepulsiveLJ”

– epsilon: 𝜀

– sigma: 𝜎

– max_force: force magnitude will be capped to not exceed max_force

– aware_mode:

* if “None”, all particles interact with each other.

* if “Object”, the particles belonging to the same object in an object vector do not interact with
each other. That restriction only applies if both Particle Vectors in the interactions are the
same and is actually an Object Vector.

* if “Rod”, the particles interact with all other particles except with the ones which are below
a given a distance (in number of segment) of the same rod vector. The distance is specified
by the kwargs parameter min_segments_distance.

– init_length_fraction: tnitial length factor. Must be in [0, 1].

– grow_until: time after which the length quantities are scaled by one.

• kind = “Morse”

– De: 𝐷𝑒

– r0: 𝑟0

– beta: 𝛽

– aware_mode: See “RepulsiveLJ” kernel description.

• kind = “Density”

– density_kernel: the desired density kernel (see below)

61

The available density kernels are “MDPD” and “WendlandC2”. Note that “MDPD” can not be used with
SDPD interactions. MDPD interactions can use only “MDPD” density kernel.

For SDPD, the available equation of states are given below:

• EOS = “Linear” parameters:

– sound_speed: the speed of sound

– rho_0: background pressure in 𝑐𝑆 units

• EOS = “QuasiIncompressible” parameters:

– p0: 𝑝0

– rho_r: 𝜌𝑟

class RodForces
Bases: mmirheo.Interactions.Interaction

Forces acting on an elastic rod.

The rod interactions are composed of forces comming from:

• bending energy, 𝐸bend

• twist energy, 𝐸twist

• bounds energy, 𝐸bound

The form of the bending energy is given by (for a bi-segment):

𝐸bend =
𝑙

4

1∑︁
𝑗=0

(︀
𝜅𝑗 − 𝜅

)︀𝑇
𝐵
(︀
𝜅𝑗 − 𝜅

)︀
,

where

𝜅𝑗 =
1

𝑙

(︁
(𝜅b) ·m𝑗

2,−(𝜅b) ·m𝑗
1

)︁
.

See, e.g. [bergou2008] for more details. The form of the twist energy is given by (for a bi-segment):

𝐸twist =
𝑘𝑡𝑙

2

(︂
𝜃1 − 𝜃0

𝑙
− 𝜏

)︂2

.

The additional bound energy is a simple harmonic potential with a given equilibrium length.

__init__(name: str, state_update: str=’none’, save_energies: bool=False, **kwargs)→ None

Parameters

• name – name of the interaction

• state_update – description of the state update method; only makes sense for multiple
states. See below for possible choices.

• save_energies – if True, save the energies of each bisegment

kwargs:

• a0 (real): equilibrium length between 2 opposite cross vertices

• l0 (real): equilibrium length between 2 consecutive vertices on the centerline

• k_s_center (real): elastic force magnitude for centerline

• k_s_frame (real): elastic force magnitude for material frame particles

62

• k_bending (real3): Bending symmetric tensor 𝐵 in the order (𝐵𝑥𝑥, 𝐵𝑥𝑦, 𝐵𝑧𝑧)

• kappa0 (real2): Spontaneous curvatures along the two material frames 𝜅

• k_twist (real): Twist energy magnitude 𝑘twist

• tau0 (real): Spontaneous twist 𝜏

• E0 (real): (optional) energy ground state

state update parameters, for state_update = ‘smoothing’:

(not fully implemented yet; for now just takes minimum state but no smoothing term)

state update parameters, for state_update = ‘spin’:

• nsteps number of MC step per iteration

• kBT temperature used in the acceptance-rejection algorithm

• J neighbouring spin ‘dislike’ energy

The interaction can support multiple polymorphic states if kappa0, tau0 and E0 are lists of equal size. In
this case, the E0 parameter is required. Only lists of 1, 2 and 11 states are supported.

12 Object bouncers

Bouncers prevent particles from crossing boundaries of objects (maintaining no-through boundary conditions). The
idea of the bouncers is to move the particles that crossed the object boundary after integration step back to the correct
side. Particles are moved such that they appear very close (about 10−5 units away from the boundary). Assuming
that the objects never come too close to each other or the walls, this approach ensures that recovered particles will not
penetrate into a different object or wall. In practice maintaining separation of at least 10−3 units between walls and
objects is sufficient. Note that particle velocities are also altered, which means that objects experience extra force from
the collisions.

See also Mirheo.registerBouncer and Mirheo.setBouncer.

12.1 Summary

Bouncer() Base class for bouncing particles off the objects.
Capsule() This bouncer will use the analytical capsule representa-

tion of the rigid objects to perform the bounce.
Cylinder() This bouncer will use the analytical cylinder represen-

tation of the rigid objects to perform the bounce.
Ellipsoid() This bouncer will use the analytical ellipsoid represen-

tation of the rigid objects to perform the bounce.
Mesh() This bouncer will use the triangular mesh associated

with objects to detect boundary crossings.
Rod() This bouncer will use the analytical representation of

enlarged segments by a given radius.

12.2 Details

class Bouncer
Bases: object

63

Base class for bouncing particles off the objects. Take bounce kernel as argument:

• kernel = “bounce_back”: Bounces back the particle. The new velocity of the particle is given by:

unew = uwall − (uold − uwall) .

• kernel = “bounce_maxwell”: Reinsert particle at the collision point with a velocity drawn from a
maxwellian distribution. Need the additional parameter kBT (real). The new velocity of the par-
ticle is given by:

unew = uwall +

√︂
𝑘𝐵𝑇

𝑚
𝜉,

where 𝜉 ∼ 𝒩 (0, 1).

__init__()
Initialize self. See help(type(self)) for accurate signature.

class Capsule
Bases: mmirheo.Bouncers.Bouncer

This bouncer will use the analytical capsule representation of the rigid objects to perform the bounce. No
additional correction from the Object Belonging Checker is usually required. The velocity of the particles
bounced from the cylinder is reversed with respect to the boundary velocity at the contact point.

__init__(name: str, kernel: str, verbosity: int=0, **kwargs)→ None

Parameters

• name – name of the checker

• kernel – the kernel used to bounce the particles (see Bouncer)

• verbosity – 0 for no warning, 1 to display rescue failures, 2 to display all warnings

class Cylinder
Bases: mmirheo.Bouncers.Bouncer

This bouncer will use the analytical cylinder representation of the rigid objects to perform the bounce. No
additional correction from the Object Belonging Checker is usually required. The velocity of the particles
bounced from the cylinder is reversed with respect to the boundary velocity at the contact point.

__init__(name: str, kernel: str, verbosity: int=0, **kwargs)→ None

Parameters

• name – name of the checker

• kernel – the kernel used to bounce the particles (see Bouncer)

• verbosity – 0 for no warning, 1 to display rescue failures, 2 to display all warnings

class Ellipsoid
Bases: mmirheo.Bouncers.Bouncer

This bouncer will use the analytical ellipsoid representation of the rigid objects to perform the bounce. No
additional correction from the Object Belonging Checker is usually required. The velocity of the particles
bounced from the ellipsoid is reversed with respect to the boundary velocity at the contact point.

__init__(name: str, kernel: str, verbosity: int=0, **kwargs)→ None

Parameters

• name – name of the checker

64

• kernel – the kernel used to bounce the particles (see Bouncer)

• verbosity – 0 for no warning, 1 to display rescue failures, 2 to display all warnings

class Mesh
Bases: mmirheo.Bouncers.Bouncer

This bouncer will use the triangular mesh associated with objects to detect boundary crossings. Therefore it can
only be created for Membrane and Rigid Object types of object vectors. Due to numerical precision, about 1 of
105 − 106 mesh crossings will not be detected, therefore it is advised to use that bouncer in conjunction with
correction option provided by the Object Belonging Checker, see Object belonging checkers.

Note: In order to prevent numerical instabilities in case of light membrane particles, the new velocity of the
bounced particles will be a random vector drawn from the Maxwell distibution of given temperature and added
to the velocity of the mesh triangle at the collision point.

__init__(name: str, kernel: str, **kwargs)→ None

Parameters

• name – name of the bouncer

• kernel – the kernel used to bounce the particles (see Bouncer)

class Rod
Bases: mmirheo.Bouncers.Bouncer

This bouncer will use the analytical representation of enlarged segments by a given radius. The velocity of the
particles bounced from the segments is reversed with respect to the boundary velocity at the contact point.

__init__(name: str, radius: float, kernel: str, **kwargs)→ None

Parameters

• name – name of the checker

• radius – radius of the segments

• kernel – the kernel used to bounce the particles (see Bouncer)

13 Walls

Walls are used to represent time-independent stationary boundary conditions for the flows. They are described in the
form of a signed distance function, such that a zero-level isosurface defines the wall surface. No slip and no through
boundary conditions are enforced on that surface by bouncing the particles off the wall surface.

In order to prevent undesired density oscillations near the walls, so called frozen particles are used. These non-moving
particles reside inside the walls and interact with the regular liquid particles. If the density and distribution of the
frozen particles is the same as of the corresponding liquid particles, the density oscillations in the liquid in proximity
of the wall is minimal. The frozen particles have to be created based on the wall in the beginning of the simulation,
see Mirheo.makeFrozenWallParticles.

In the beginning of the simulation all the particles defined in the simulation (even not attached to the wall by Mirheo)
will be checked against all of the walls. Those inside the wall as well as objects partly inside the wall will be deleted.
The only exception are the frozen PVs, created by the Mirheo.makeFrozenWallParticles or the PVs manu-
ally set to be treated as frozen by Wall.attachFrozenParticles

65

https://en.wikipedia.org/wiki/Signed_distance_function

13.1 Summary

Box() Rectangular cuboid wall with edges aligned with the co-
ordinate axes.

Cylinder() Cylindrical infinitely stretching wall, the main axis is
aligned along OX or OY or OZ

MovingPlane() Planar wall that is moving along itself with constant ve-
locity.

OscillatingPlane() Planar wall that is moving along itself with periodically
changing velocity:

Plane() Planar infinitely stretching wall.
RotatingCylinder() Cylindrical wall rotating with constant angular velocity

along its axis.
SDF() This wall is based on an arbitrary Signed Distance Func-

tion (SDF) defined in the simulation domain on a regular
Cartesian grid.

Sphere() Spherical wall.
Wall() Base wall class.

13.2 Details

class Box
Bases: mmirheo.Walls.Wall

Rectangular cuboid wall with edges aligned with the coordinate axes.

__init__(name: str, low: real3, high: real3, inside: bool=False)→ None

Parameters

• name – name of the wall

• low – lower corner of the box

• high – higher corner of the box

• inside – whether the domain is inside the box or outside of it

attachFrozenParticles(arg0: ParticleVectors.ParticleVector)→ None
Let the wall know that the following ParticleVector should be treated as frozen. As a result, its
particles will not be removed from the inside of the wall.

class Cylinder
Bases: mmirheo.Walls.Wall

Cylindrical infinitely stretching wall, the main axis is aligned along OX or OY or OZ

__init__(name: str, center: real2, radius: float, axis: str, inside: bool=False)→ None

Parameters

• name – name of the wall

• center – point that belongs to the cylinder axis projected along that axis

• radius – cylinder radius

• axis – direction of cylinder axis, valid values are “x”, “y” or “z”

• inside – whether the domain is inside the cylinder or outside of it

66

attachFrozenParticles(arg0: ParticleVectors.ParticleVector)→ None
Let the wall know that the following ParticleVector should be treated as frozen. As a result, its
particles will not be removed from the inside of the wall.

class MovingPlane
Bases: mmirheo.Walls.Wall

Planar wall that is moving along itself with constant velocity. Can be used to produce Couette velocity profile
in combination with The boundary conditions on such wall are no-through and constant velocity (specified).

__init__(name: str, normal: real3, pointThrough: real3, velocity: real3)→ None

Parameters

• name – name of the wall

• normal – wall normal, pointing inside the wall

• pointThrough – point that belongs to the plane

• velocity – wall velocity, should be orthogonal to the normal

attachFrozenParticles(arg0: ParticleVectors.ParticleVector)→ None
Let the wall know that the following ParticleVector should be treated as frozen. As a result, its
particles will not be removed from the inside of the wall.

class OscillatingPlane
Bases: mmirheo.Walls.Wall

Planar wall that is moving along itself with periodically changing velocity:

u(𝑡) = 𝑐𝑜𝑠(2 * 𝜋 * 𝑡/𝑇);

__init__(name: str, normal: real3, pointThrough: real3, velocity: real3, period: float)→ None

Parameters

• name – name of the wall

• normal – wall normal, pointing inside the wall

• pointThrough – point that belongs to the plane

• velocity – velocity amplitude, should be orthogonal to the normal

• period – oscillation period dpd time units

attachFrozenParticles(arg0: ParticleVectors.ParticleVector)→ None
Let the wall know that the following ParticleVector should be treated as frozen. As a result, its
particles will not be removed from the inside of the wall.

class Plane
Bases: mmirheo.Walls.Wall

Planar infinitely stretching wall. Inside is determined by the normal direction .

__init__(name: str, normal: real3, pointThrough: real3)→ None

Parameters

• name – name of the wall

• normal – wall normal, pointing inside the wall

• pointThrough – point that belongs to the plane

67

attachFrozenParticles(arg0: ParticleVectors.ParticleVector)→ None
Let the wall know that the following ParticleVector should be treated as frozen. As a result, its
particles will not be removed from the inside of the wall.

class RotatingCylinder
Bases: mmirheo.Walls.Wall

Cylindrical wall rotating with constant angular velocity along its axis.

__init__(name: str, center: real2, radius: float, axis: str, omega: float, inside: bool=False)→ None

Parameters

• name – name of the wall

• center – point that belongs to the cylinder axis projected along that axis

• radius – cylinder radius

• axis – direction of cylinder axis, valid values are “x”, “y” or “z”

• omega – angular velocity of rotation along the cylinder axis

• inside – whether the domain is inside the cylinder or outside of it

attachFrozenParticles(arg0: ParticleVectors.ParticleVector)→ None
Let the wall know that the following ParticleVector should be treated as frozen. As a result, its
particles will not be removed from the inside of the wall.

class SDF
Bases: mmirheo.Walls.Wall

This wall is based on an arbitrary Signed Distance Function (SDF) defined in the simulation domain on a regular
Cartesian grid. The wall reads the SDF data from a custom format .sdf file, that has a special structure.

First two lines define the header: three real number separated by spaces govern the size of the domain where the
SDF is defined, and next three integer numbers (𝑁𝑥 𝑁𝑦 𝑁𝑧) define the resolution. Next the 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧
single precision realing point values are written (in binary representation).

Negative SDF values correspond to the domain, and positive – to the inside of the wall. The boundary is defined
by the zero-level isosurface.

__init__(name: str, sdfFilename: str, h: real3=real3(0.25, 0.25, 0.25), margin: real3=real3(5.0, 5.0,
5.0))→ None

Parameters

• name – name of the wall

• sdfFilename – name of the .sdf file

• h – resolution of the resampled SDF. In order to have a more accurate SDF representation,
the initial function is resampled on a finer grid. The lower this value is, the more accurate
the wall will be represented, however, the more memory it will consume and the slower
the execution will be.

• margin – Additional margin to store on each rank. This is used to e.g. bounce-back
particles that are on the local rank but outside the local domain.

attachFrozenParticles(arg0: ParticleVectors.ParticleVector)→ None
Let the wall know that the following ParticleVector should be treated as frozen. As a result, its
particles will not be removed from the inside of the wall.

class Sphere
Bases: mmirheo.Walls.Wall

68

Spherical wall.

__init__(name: str, center: real3, radius: float, inside: bool=False)→ None

Parameters

• name – name of the wall

• center – sphere center

• radius – sphere radius

• inside – whether the domain is inside the sphere or outside of it

attachFrozenParticles(arg0: ParticleVectors.ParticleVector)→ None
Let the wall know that the following ParticleVector should be treated as frozen. As a result, its
particles will not be removed from the inside of the wall.

class Wall
Bases: object

Base wall class.

__init__()
Initialize self. See help(type(self)) for accurate signature.

attachFrozenParticles(arg0: ParticleVectors.ParticleVector)→ None
Let the wall know that the following ParticleVector should be treated as frozen. As a result, its
particles will not be removed from the inside of the wall.

14 Plugins

Plugins are used to add specific data processing or to modify the regular pipeline in certain way. However, the
functionality they provide is not considered essential.

If the simulation is started without postprocess part (see Overview), most of the plugins are disabled.

14.1 Summary

Classes

PinObject Contains the special value Unrestricted for unrestricted
axes in createPinObject.

PostprocessPlugin Base postprocess plugin class
SimulationPlugin Base simulation plugin class

Creation functions

createAddForce(state, name, pv, force) This plugin will add constant force F𝑒𝑥𝑡𝑟𝑎 to each par-
ticle of a specific PV every time-step.

createAddFourRollMillForce(state, name, pv,
. . .)

This plugin will add a force f =
(𝐴 sin𝑥 cos 𝑦,𝐴 cos𝑥 sin 𝑦, 0) to each particle of
a specific PV every time-step.

Continued on next page

69

Table 12 – continued from previous page
createAddTorque(state, name, ov, torque) This plugin will add constant torque T𝑒𝑥𝑡𝑟𝑎 to each ob-

ject of a specific OV every time-step.
createAnchorParticles(state, name, pv, . . .) This plugin will set a given particle at a given position

and velocity.
createBerendsenThermostat(state, name, pvs,
. . .)

Berendsen thermostat.

createDensityControl(state, name, file_name,
. . .)

This plugin applies forces to a set of particle vectors in
order to get a constant density.

createDensityOutlet(state, name, pvs, . . .) This plugin removes particles from a set of
ParticleVector in a given region if the num-
ber density is larger than a given target.

createDumpAverage(state, name, pvs, . . .) This plugin will project certain quantities of the par-
ticle vectors on the grid (by simple binning), perform
time-averaging of the grid and dump it in XDMF for-
mat with HDF5 backend.The quantities of interest are
represented as channels associated with particles vec-
tors.Some interactions, integrators, etc.and more no-
table plug-ins can add to the Particle Vectors per-
particles arrays to hold different values.These arrays are
called channels.Any such channel may be used in this
plug-in, however, user must explicitely specify the type
of values that the channel holds.Particle number den-
sity is used to correctly average the values, so it will
be sampled and written in any case into the field “num-
ber_densities”..

createDumpAverageRelative(state, name, pvs,
. . .)

This plugin acts just like the regular flow dumper, with
one difference.

createDumpMesh(state, name, ov, dump_every,
path)

This plugin will write the meshes of all the object of the
specified Object Vector in a PLY format.

createDumpObjectStats(state, name, ov, . . .) This plugin will write the coordinates of the centers of
mass of the objects of the specified Object Vector.

createDumpParticles(state, name, pv, . . .) This plugin will dump positions, velocities and optional
attached data of all the particles of the specified Particle
Vector.

createDumpParticlesWithMesh(state, name,
ov, . . .)

This plugin will dump positions, velocities and optional
attached data of all the particles of the specified Object
Vector, as well as connectivity information.

createDumpParticlesWithPolylines(state,
. . .)

This plugin will dump positions, velocities and optional
attached data of all the particles of the specified Chain-
Vector, as well as connectivity information representing
polylines.

createDumpXYZ(state, name, pv, dump_every, path) This plugin will dump positions of all the particles of
the specified Particle Vector in the XYZ format.

createExchangePVSFluxPlane(state, name,
pv1, . . .)

This plugin exchanges particles from a particle vector
crossing a given plane to another particle vector.

createExternalMagneticTorque(state, name,
. . .)

This plugin gives a magnetic moment M to every rigid
objects in a given RigidObjectVector.

createForceSaver(state, name, pv) This plugin creates an extra channel per particle inside
the given particle vector named ‘forces’.

Continued on next page

70

http://www.xdmf.org/index.php/XDMF_Model_and_Format
https://www.hdfgroup.org/solutions/hdf5/
https://en.wikipedia.org/wiki/PLY_(file_format)

Table 12 – continued from previous page
createImposeProfile(state, name, pv, low, . . .) This plugin will set the velocity of each particle inside a

given domain to a target velocity with an additive term
drawn from Maxwell distribution of the given tempera-
ture.

createImposeVelocity(state, name, pvs, . . .) This plugin will add velocity to all the particles of the
target PV in the specified area (rectangle) such that the
average velocity equals to desired.

createMagneticDipoleInteractions(state,
. . .)

This plugin computes the forces and torques resulting
from pairwise dipole-dipole interactions between rigid
objects.

createMembraneExtraForce(state, name, pv,
forces)

This plugin adds a given external force to a given mem-
brane.

createMsd(state, name, pv, start_time, . . .) This plugin computes the mean square displacement of
th particles of a given ParticleVector.

createParticleChannelAverager(state,
name, . . .)

This plugin averages a channel (per particle data) inside
the given particle vector and saves it to a new channel.

createParticleChannelSaver(state, name, pv,
. . .)

This plugin creates an extra channel per particle inside
the given particle vector with a given name.

createParticleChecker(state, name,
check_every)

This plugin will check the positions and velocities of all
particles in the simulation every given time steps.

createParticleDisplacement(state, name, pv,
. . .)

This plugin computes and save the displacement of the
particles within a given particle vector.

createParticleDrag(state, name, pv, drag) This plugin will add drag force f = −𝐶𝑑u to each par-
ticle of a specific PV every time-step.

createPinObject(state, name, ov, dump_every,
. . .)

This plugin will impose given velocity as the center of
mass velocity (by axis) of all the objects of the specified
Object Vector.

createPinRodExtremity(state, name, rv, . . .) This plugin adds a force on a given segment of all the
rods in a RodVector.

createPlaneOutlet(state, name, pvs, plane) This plugin removes all particles from a set of
ParticleVector that are on the non-negative side
of a given plane.

createRateOutlet(state, name, pvs, . . .) This plugin removes particles from a set of
ParticleVector in a given region at a given
mass rate.

createRdf(state, name, pv, max_dist, nbins, . . .) Compute the radial distribution function (RDF) of a
given ParticleVector.

createStats(state, name, every, pvs, filename) This plugin will report aggregate quantities of all the
particles in the simulation: total number of particles
in the simulation, average temperature and momentum,
maximum velocity magnutide of a particle and also the
mean real time per step in milliseconds.

createTemperaturize(state, name, pv, kBT, . . .) This plugin changes the velocity of each particles from
a given ParticleVector.

createVacf(state, name, pv, start_time, . . .) This plugin computes the mean velocity autocorrelation
over time from a given ParticleVector.

createVelocityControl(state, name, filename,
. . .)

This plugin applies a uniform force to all the particles
of the target PVS in the specified area (rectangle).

createVelocityInlet(state, name, pv, . . .) This plugin inserts particles in a given
ParticleVector.

Continued on next page

71

Table 12 – continued from previous page
createVirialPressurePlugin(state, name, pv,
. . .)

This plugin computes the virial pressure from a given
ParticleVector.

createWallForceCollector(state, name, wall,
. . .)

This plugin collects and averages the total force exerted
on a given wall.

createWallRepulsion(state, name, pv, wall, . . .) This plugin will add force on all the particles that are
nearby a specified wall.

14.2 Details

class PinObject
Bases: mmirheo.Plugins.SimulationPlugin

Contains the special value Unrestricted for unrestricted axes in createPinObject.

class PostprocessPlugin
Bases: object

Base postprocess plugin class

class SimulationPlugin
Bases: object

Base simulation plugin class

createAddForce(state: MirState, name: str, pv: ParticleVectors.ParticleVector, force: real3) → Tu-
ple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin will add constant force F𝑒𝑥𝑡𝑟𝑎 to each particle of a specific PV every time-step. Is is advised to
only use it with rigid objects, since Velocity-Verlet integrator with constant pressure can do the same without
any performance penalty.

Parameters

• name – name of the plugin

• pv – ParticleVector that we’ll work with

• force – extra force

createAddFourRollMillForce(state: MirState, name: str, pv: ParticleVectors.ParticleVector,
intensity: float) → Tuple[Plugins.SimulationPlugin, Plug-
ins.PostprocessPlugin]

This plugin will add a force f = (𝐴 sin𝑥 cos 𝑦,𝐴 cos𝑥 sin 𝑦, 0) to each particle of a specific PV every time-step.

Parameters

• name – name of the plugin

• pv – ParticleVector that we’ll work with

• intensity – The intensity of the force

createAddTorque(state: MirState, name: str, ov: ParticleVectors.ParticleVector, torque: real3) → Tu-
ple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin will add constant torque T𝑒𝑥𝑡𝑟𝑎 to each object of a specific OV every time-step.

Parameters

• name – name of the plugin

• ov – ObjectVector that we’ll work with

• torque – extra torque (per object)

72

createAnchorParticles(state: MirState, name: str, pv: ParticleVectors.ParticleVector, positions:
Callable[[float], List[real3]], velocities: Callable[[float], List[real3]], pids:
List[int], report_every: int, path: str) → Tuple[Plugins.SimulationPlugin,
Plugins.PostprocessPlugin]

This plugin will set a given particle at a given position and velocity.

Parameters

• name – name of the plugin

• pv – ParticleVector that we’ll work with

• positions – positions (at given time) of the particles

• velocities – velocities (at given time) of the particles

• pids – global ids of the particles in the given particle vector

• report_every – report the time averaged force acting on the particles every this amount
of timesteps

• path – folder where to dump the stats

createBerendsenThermostat(state: MirState, name: str, pvs: List[ParticleVectors.ParticleVector],
tau: float, kBT: float, increaseIfLower: bool=True) → Tu-
ple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

Berendsen thermostat.

On each time step the velocities of all particles in given particle vectors are multiplied by the following factor:

𝜆 =

√︃
1 +

∆𝑡

𝜏

(︂
𝑇0

𝑇
− 1

)︂
where ∆𝑡 is a time step, 𝜏 relaxation time, 𝑇 current temperature, 𝑇0 target temperature.

Reference: Berendsen et al. (1984)

Parameters

• name – name of the plugin

• pvs – list of ParticleVector objects to apply the thermostat to

• tau – relaxation time 𝜏

• kBT – target thermal energy 𝑘𝐵𝑇0

• increaseIfLower – whether to increase the temperature if it’s lower than the target
temperature

createDensityControl(state: MirState, name: str, file_name: str, pvs:
List[ParticleVectors.ParticleVector], target_density: float, region:
Callable[[real3], float], resolution: real3, level_lo: float, level_hi: float,
level_space: float, Kp: float, Ki: float, Kd: float, tune_every: int,
dump_every: int, sample_every: int) → Tuple[Plugins.SimulationPlugin,
Plugins.PostprocessPlugin]

This plugin applies forces to a set of particle vectors in order to get a constant density.

Parameters

• name – name of the plugin

• file_name – output filename

• pvs – list of ParticleVector that we’ll work with

73

https://aip.scitation.org/doi/10.1063/1.448118

• target_density – target number density (used only at boundaries of level sets)

• region – a scalar field which describes how to subdivide the domain. It must be continuous
and differentiable, as the forces are in the gradient direction of this field

• resolution – grid resolution to represent the region field

• level_lo – lower level set to apply the controller on

• level_hi – highest level set to apply the controller on

• level_space – the size of one subregion in terms of level sets

• Ki, Kd (Kp,) – pid control parameters

• tune_every – update the forces every this amount of time steps

• dump_every – dump densities and forces in file filename

• sample_every – sample to average densities every this amount of time steps

createDensityOutlet(state: MirState, name: str, pvs: List[ParticleVectors.ParticleVector], num-
ber_density: float, region: Callable[[real3], float], resolution: real3) → Tu-
ple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin removes particles from a set of ParticleVector in a given region if the number density is larger
than a given target.

Parameters

• name – name of the plugin

• pvs – list of ParticleVector that we’ll work with

• number_density – maximum number_density in the region

• region – a function that is negative in the concerned region and positive outside

• resolution – grid resolution to represent the region field

createDumpAverage(state: MirState, name: str, pvs: List[ParticleVectors.ParticleVector], sample_every:
int, dump_every: int, bin_size: real3=real3(1.0, 1.0, 1.0), channels: List[str], path:
str=’xdmf/’)→ Tuple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin will project certain quantities of the particle vectors on the grid (by simple binning), perform time-
averaging of the grid and dump it in XDMF format with HDF5 backend. The quantities of interest are rep-
resented as channels associated with particles vectors. Some interactions, integrators, etc. and more notable
plug-ins can add to the Particle Vectors per-particles arrays to hold different values. These arrays are called
channels. Any such channel may be used in this plug-in, however, user must explicitely specify the type of val-
ues that the channel holds. Particle number density is used to correctly average the values, so it will be sampled
and written in any case into the field “number_densities”.

Note: This plugin is inactive if postprocess is disabled

Parameters

• name – name of the plugin

• pvs – list of ParticleVector that we’ll work with

• sample_every – sample quantities every this many time-steps

• dump_every – write files every this many time-steps

• bin_size – bin size for sampling. The resulting quantities will be cell-centered

74

http://www.xdmf.org/index.php/XDMF_Model_and_Format
https://www.hdfgroup.org/solutions/hdf5/

• path – Path and filename prefix for the dumps. For every dump two files will be created:
<path>_NNNNN.xmf and <path>_NNNNN.h5

• channels – list of channel names. See Reserved names.

createDumpAverageRelative(state: MirState, name: str, pvs: List[ParticleVectors.ParticleVector],
relative_to_ov: ParticleVectors.ObjectVector, relative_to_id: int,
sample_every: int, dump_every: int, bin_size: real3=real3(1.0,
1.0, 1.0), channels: List[str], path: str=’xdmf/’) → Tu-
ple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin acts just like the regular flow dumper, with one difference. It will assume a coordinate system
attached to the center of mass of a specific object. In other words, velocities and coordinates sampled correspond
to the object reference frame.

Note: Note that this plugin needs to allocate memory for the grid in the full domain, not only in the corre-
sponding MPI subdomain. Therefore large domains will lead to running out of memory

Note: This plugin is inactive if postprocess is disabled

The arguments are the same as for createDumpAverage() with a few additions:

Parameters

• name – name of the plugin

• pvs – list of ParticleVector that we’ll work with

• sample_every – sample quantities every this many time-steps

• dump_every – write files every this many time-steps

• bin_size – bin size for sampling. The resulting quantities will be cell-centered

• path – Path and filename prefix for the dumps. For every dump two files will be created:
<path>_NNNNN.xmf and <path>_NNNNN.h5

• channels – list of channel names. See Reserved names.

• relative_to_ov – take an object governing the frame of reference from this
ObjectVector

• relative_to_id – take an object governing the frame of reference with the specific ID

createDumpMesh(state: MirState, name: str, ov: ParticleVectors.ObjectVector, dump_every: int, path: str)
→ Tuple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin will write the meshes of all the object of the specified Object Vector in a PLY format.

Note: This plugin is inactive if postprocess is disabled

Parameters

• name – name of the plugin

• ov – ObjectVector that we’ll work with

• dump_every – write files every this many time-steps

• path – the files will look like this: <path>/<ov_name>_NNNNN.ply

75

https://en.wikipedia.org/wiki/PLY_(file_format)

createDumpObjectStats(state: MirState, name: str, ov: ParticleVectors.ObjectVector,
dump_every: int, filename: str) → Tuple[Plugins.SimulationPlugin,
Plugins.PostprocessPlugin]

This plugin will write the coordinates of the centers of mass of the objects of the specified Object Vector.
Instantaneous quantities (COM velocity, angular velocity, force, torque) are also written. If the objects are rigid
bodies, also will be written the quaternion describing the rotation. The type id field is also dumped if the objects
have this field activated (see MembraneWithTypeId).

The file format is the following:

<object id> <simulation time> <COM>x3 [<quaternion>x4] <velocity>x3 <angular velocity>x3 <force>x3
<torque>x3 [<type id>]

Note: Note that all the written values are instantaneous

Note: This plugin is inactive if postprocess is disabled

Parameters

• name – Name of the plugin.

• ov – ObjectVector that we’ll work with.

• dump_every – Write files every this many time-steps.

• filename – The name of the resulting csv file.

createDumpParticles(state: MirState, name: str, pv: ParticleVectors.ParticleVector, dump_every: int,
channel_names: List[str], path: str) → Tuple[Plugins.SimulationPlugin, Plug-
ins.PostprocessPlugin]

This plugin will dump positions, velocities and optional attached data of all the particles of the specified Particle
Vector. The data is dumped into hdf5 format. An additional xdfm file is dumped to describe the data and make
it readable by visualization tools. If a channel from object data or bisegment data is provided, the data will be
scattered to particles before being dumped as normal particle data.

Parameters

• name – name of the plugin

• pv – ParticleVector that we’ll work with

• dump_every – write files every this many time-steps

• channel_names – list of channel names to be dumped.

• path – Path and filename prefix for the dumps. For every dump two files will be created:
<path>_NNNNN.xmf and <path>_NNNNN.h5

createDumpParticlesWithMesh(state: MirState, name: str, ov: ParticleVectors.ObjectVector,
dump_every: int, channel_names: List[str], path: str) → Tu-
ple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin will dump positions, velocities and optional attached data of all the particles of the specified Object
Vector, as well as connectivity information. The data is dumped into hdf5 format. An additional xdfm file is
dumped to describe the data and make it readable by visualization tools.

Parameters

• name – name of the plugin

76

• ov – ObjectVector that we’ll work with

• dump_every – write files every this many time-steps

• channel_names – list of channel names to be dumped.

• path – Path and filename prefix for the dumps. For every dump two files will be created:
<path>_NNNNN.xmf and <path>_NNNNN.h5

createDumpParticlesWithPolylines(state: MirState, name: str, cv: ParticleVectors.ChainVector,
dump_every: int, channel_names: List[str], path: str)→ Tu-
ple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin will dump positions, velocities and optional attached data of all the particles of the specified Chain-
Vector, as well as connectivity information representing polylines. The data is dumped into hdf5 format. An
additional xdfm file is dumped to describe the data and make it readable by visualization tools.

Parameters

• name – name of the plugin.

• cv – ChainVector to be dumped.

• dump_every – write files every this many time-steps.

• channel_names – list of channel names to be dumped.

• path – Path and filename prefix for the dumps. For every dump two files will be created:
<path>_NNNNN.xmf and <path>_NNNNN.h5

createDumpXYZ(state: MirState, name: str, pv: ParticleVectors.ParticleVector, dump_every: int, path: str)
→ Tuple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin will dump positions of all the particles of the specified Particle Vector in the XYZ format.

Note: This plugin is inactive if postprocess is disabled

Parameters

• name – name of the plugin

• pvs – list of ParticleVector that we’ll work with

• dump_every – write files every this many time-steps

• path – the files will look like this: <path>/<pv_name>_NNNNN.xyz

createExchangePVSFluxPlane(state: MirState, name: str, pv1: ParticleVectors.ParticleVector,
pv2: ParticleVectors.ParticleVector, plane: real4) → Tu-
ple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin exchanges particles from a particle vector crossing a given plane to another particle vector. A
particle with position x, y, z has crossed the plane if ax + by + cz + d >= 0, where a, b, c and d are the coefficient
stored in the ‘plane’ variable

Parameters

• name – name of the plugin

• pv1 – ParticleVector source

• pv2 – ParticleVector destination

• plane – 4 coefficients for the plane equation ax + by + cz + d >= 0

77

createExternalMagneticTorque(state: MirState, name: str, rov: ParticleVectors.RigidObjectVector,
moment: real3, magneticFunction: Callable[[float], real3])→ Tu-
ple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin gives a magnetic moment M to every rigid objects in a given RigidObjectVector. It also
models a uniform magnetic field B (varying in time) and adds the induced torque to the objects according to:

T = M×B

The magnetic field is passed as a function from python. The function must take a real (time) as input and output
a tuple of three reals (magnetic field).

Parameters

• name – name of the plugin

• rov – RigidObjectVector with which the magnetic field will interact

• moment – magnetic moment per object

• magneticFunction – a function that depends on time and returns a uniform (real3)
magnetic field

createForceSaver(state: MirState, name: str, pv: ParticleVectors.ParticleVector) → Tu-
ple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin creates an extra channel per particle inside the given particle vector named ‘forces’. It copies the
total forces at each time step and make it accessible by other plugins. The forces are stored in an array of real3.

Parameters

• name – name of the plugin

• pv – ParticleVector that we’ll work with

createImposeProfile(state: MirState, name: str, pv: ParticleVectors.ParticleVector, low: real3, high:
real3, velocity: real3, kBT: float) → Tuple[Plugins.SimulationPlugin, Plug-
ins.PostprocessPlugin]

This plugin will set the velocity of each particle inside a given domain to a target velocity with an additive term
drawn from Maxwell distribution of the given temperature.

Parameters

• name – name of the plugin

• pv – ParticleVector that we’ll work with

• low – the lower corner of the domain

• high – the higher corner of the domain

• velocity – target velocity

• kBT – temperature in the domain (appropriate Maxwell distribution will be used)

createImposeVelocity(state: MirState, name: str, pvs: List[ParticleVectors.ParticleVector], every: int,
low: real3, high: real3, velocity: real3) → Tuple[Plugins.SimulationPlugin,
Plugins.PostprocessPlugin]

This plugin will add velocity to all the particles of the target PV in the specified area (rectangle) such that the
average velocity equals to desired.

Parameters

• name – name of the plugin

• pvs – list of ParticleVector that we’ll work with

• every – change the velocities once in every timestep

78

• low – the lower corner of the domain

• high – the higher corner of the domain

• velocity – target velocity

createMagneticDipoleInteractions(state: MirState, name: str, rov: ParticleVec-
tors.RigidObjectVector, moment: real3, mu0: float) →
Tuple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin computes the forces and torques resulting from pairwise dipole-dipole interactions between rigid
objects. All rigid objects are assumed to be the same with a constant magnetic moment in their frame of
reference.

Parameters

• name – name of the plugin

• rov – RigidObjectVector with which the magnetic field will interact

• moment – magnetic moment per object

• mu0 – magnetic permeability of the medium

createMembraneExtraForce(state: MirState, name: str, pv: ParticleVectors.ParticleVector,
forces: List[real3]) → Tuple[Plugins.SimulationPlugin, Plug-
ins.PostprocessPlugin]

This plugin adds a given external force to a given membrane. The force is defined vertex wise and does not
depend on position. It is the same for all membranes belonging to the same particle vector.

Parameters

• name – name of the plugin

• pv – ParticleVector to which the force should be added

• forces – array of forces, one force (3 reals) per vertex in a single mesh

createMsd(state: MirState, name: str, pv: ParticleVectors.ParticleVector, start_time: float, end_time: float,
dump_every: int, path: str)→ Tuple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin computes the mean square displacement of th particles of a given ParticleVector. The refer-
ence position‘ is that of the given ParticleVector at the given start time.

Parameters

• name – Name of the plugin.

• pv – Concerned ParticleVector.

• start_time – Simulation time of the reference positions.

• end_time – End time until which to compute the MSD.

• dump_every – Report MSD every this many time-steps.

• path – The folder name in which the file will be dumped.

createParticleChannelAverager(state: MirState, name: str, pv: ParticleVectors.ParticleVector,
channelName: str, averageName: str, updateEvery: float)→ Tu-
ple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin averages a channel (per particle data) inside the given particle vector and saves it to a new channel.
This new channel (containing the averaged data) is updated every fixed number of time steps.

Parameters

• name – name of the plugin

• pv – ParticleVector that we’ll work with

79

• channelName – The name of the source channel.

• averageName – The name of the average channel.

• updateEvery – reinitialize the averages every this number of steps.

createParticleChannelSaver(state: MirState, name: str, pv: ParticleVectors.ParticleVector, chan-
nelName: str, savedName: str) → Tuple[Plugins.SimulationPlugin,
Plugins.PostprocessPlugin]

This plugin creates an extra channel per particle inside the given particle vector with a given name. It copies the
content of an extra channel of pv at each time step and make it accessible by other plugins.

Parameters

• name – name of the plugin

• pv – ParticleVector that we’ll work with

• channelName – the name of the source channel

• savedName – name of the extra channel

createParticleChecker(state: MirState, name: str, check_every: int) → Tu-
ple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin will check the positions and velocities of all particles in the simulation every given time steps. To
be used for debugging purpose.

Parameters

• name – name of the plugin

• check_every – check every this amount of time steps

createParticleDisplacement(state: MirState, name: str, pv: ParticleVectors.ParticleVector,
update_every: int) → Tuple[Plugins.SimulationPlugin, Plug-
ins.PostprocessPlugin]

This plugin computes and save the displacement of the particles within a given particle vector. The result is
stored inside the extra channel “displacements” as an array of real3.

Parameters

• name – name of the plugin

• pv – ParticleVector that we’ll work with

• update_every – displacements are computed between positions separated by this
amount of timesteps

createParticleDrag(state: MirState, name: str, pv: ParticleVectors.ParticleVector, drag: float) →
Tuple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin will add drag force f = −𝐶𝑑u to each particle of a specific PV every time-step.

Parameters

• name – name of the plugin

• pv – ParticleVector that we’ll work with

• drag – drag coefficient

createPinObject(state: MirState, name: str, ov: ParticleVectors.ObjectVector, dump_every: int, path:
str, velocity: real3, angular_velocity: real3) → Tuple[Plugins.SimulationPlugin, Plu-
gins.PostprocessPlugin]

This plugin will impose given velocity as the center of mass velocity (by axis) of all the objects of the specified

80

Object Vector. If the objects are rigid bodies, rotation may be restricted with this plugin as well. The time-
averaged force and/or torque required to impose the velocities and rotations are reported in the dumped file,
with the following format:

<object id> <simulation time> <force>x3 [<torque>x3]

Note: This plugin is inactive if postprocess is disabled

Parameters

• name – name of the plugin

• ov – ObjectVector that we’ll work with

• dump_every – write files every this many time-steps

• path – the files will look like this: <path>/<ov_name>.csv

• velocity – 3 reals, each component is the desired object velocity. If the corresponding
component should not be restricted, set this value to PinObject::Unrestricted

• angular_velocity – 3 reals, each component is the desired object angular ve-
locity. If the corresponding component should not be restricted, set this value to
PinObject::Unrestricted

createPinRodExtremity(state: MirState, name: str, rv: ParticleVectors.RodVector, segment_id: int,
f_magn: float, target_direction: real3) → Tuple[Plugins.SimulationPlugin,
Plugins.PostprocessPlugin]

This plugin adds a force on a given segment of all the rods in a RodVector. The force has the form deriving
from the potential

𝐸 = 𝑘 (1 − cos 𝜃) ,

where 𝜃 is the angle between the material frame and a given direction (projected on the concerned segment).
Note that the force is applied only on the material frame and not on the center line.

Parameters

• name – name of the plugin

• rv – RodVector that we’ll work with

• segment_id – the segment to which the plugin is active

• f_magn – force magnitude

• target_direction – the direction in which the material frame tends to align

createPlaneOutlet(state: MirState, name: str, pvs: List[ParticleVectors.ParticleVector], plane: real4)
→ Tuple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin removes all particles from a set of ParticleVector that are on the non-negative side of a given
plane.

Parameters

• name – name of the plugin

• pvs – list of ParticleVector that we’ll work with

• plane – Tuple (a, b, c, d). Particles are removed if ax + by + cz + d >= 0.

81

createRateOutlet(state: MirState, name: str, pvs: List[ParticleVectors.ParticleVector],
mass_rate: float, region: Callable[[real3], float], resolution: real3) → Tu-
ple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin removes particles from a set of ParticleVector in a given region at a given mass rate.

Parameters

• name – name of the plugin

• pvs – list of ParticleVector that we’ll work with

• mass_rate – total outlet mass rate in the region

• region – a function that is negative in the concerned region and positive outside

• resolution – grid resolution to represent the region field

createRdf(state: MirState, name: str, pv: ParticleVectors.ParticleVector, max_dist: float, nbins: int, base-
name: str, every: int)→ Tuple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

Compute the radial distribution function (RDF) of a given ParticleVector. For simplicity, particles that
are less that max_dist from the subdomain border are not counted.

Parameters

• name – Name of the plugin.

• pv – The ParticleVector that we ant to compute the RDF from.

• max_dist – The RDF will be computed on the interval [0, max_dist]. Must be strictly less
than half the minimum size of one subdomain.

• nbins – The RDF is computed on nbins bins.

• basename – Each RDF dump will be dumped in csv format to <basename>-XXXXX.csv.

• every – Computes and dump the RDF every this amount of timesteps.

createStats(state: MirState, name: str, every: int, pvs: List[ParticleVectors.ParticleVector]=[], filename:
str=”)→ Tuple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin will report aggregate quantities of all the particles in the simulation: total number of particles in the
simulation, average temperature and momentum, maximum velocity magnutide of a particle and also the mean
real time per step in milliseconds.

Note: This plugin is inactive if postprocess is disabled

Parameters

• name – Name of the plugin.

• every – Report to standard output every that many time-steps.

• pvs – List of pvs to compute statistics from. If empty, will use all the pvs registered in the
simulation.

• filename – The statistics are saved in this csv file. The name should either end with .csv
or have no extension, in which case .csv is added.

createTemperaturize(state: MirState, name: str, pv: ParticleVectors.ParticleVector, kBT: float, keepVe-
locity: bool)→ Tuple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin changes the velocity of each particles from a given ParticleVector. It can operate under two
modes: keepVelocity = True, in which case it adds a term drawn from a Maxwell distribution to the current
velocity; keepVelocity = False, in which case it sets the velocity to a term drawn from a Maxwell distribution.

82

Parameters

• name – name of the plugin

• pv – the concerned ParticleVector

• kBT – the target temperature

• keepVelocity – True for adding Maxwell distribution to the previous velocity; False to
set the velocity to a Maxwell distribution.

createVacf(state: MirState, name: str, pv: ParticleVectors.ParticleVector, start_time: float,
end_time: float, dump_every: int, path: str) → Tuple[Plugins.SimulationPlugin, Plug-
ins.PostprocessPlugin]

This plugin computes the mean velocity autocorrelation over time from a given ParticleVector. The
reference velocity v0 is that of the given ParticleVector at the given start time.

Parameters

• name – Name of the plugin.

• pv – Concerned ParticleVector.

• start_time – Simulation time of the reference velocities.

• end_time – End time until which to compute the VACF.

• dump_every – Report the VACF every this many time-steps.

• path – The folder name in which the file will be dumped.

createVelocityControl(state: MirState, name: str, filename: str, pvs:
List[ParticleVectors.ParticleVector], low: real3, high: real3, sample_every:
int, tune_every: int, dump_every: int, target_vel: real3, Kp: float, Ki: float,
Kd: float)→ Tuple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin applies a uniform force to all the particles of the target PVS in the specified area (rectangle). The
force is adapted bvia a PID controller such that the velocity average of the particles matches the target average
velocity.

Parameters

• name – Name of the plugin.

• filename – Dump file name. Must have a csv extension or no extension at all.

• pvs – List of concerned ParticleVector.

• high (low,) – boundaries of the domain of interest

• sample_every – sample velocity every this many time-steps

• tune_every – adapt the force every this many time-steps

• dump_every – write files every this many time-steps

• target_vel – the target mean velocity of the particles in the domain of interest

• Ki, Kd (Kp,) – PID controller coefficients

createVelocityInlet(state: MirState, name: str, pv: ParticleVectors.ParticleVector, im-
plicit_surface_func: Callable[[real3], float], velocity_field: Callable[[real3],
real3], resolution: real3, number_density: float, kBT: float) → Tu-
ple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin inserts particles in a given ParticleVector. The particles are inserted on a given surface with
given velocity inlet. The rate of insertion is governed by the velocity and the given number density.

Parameters

83

• name – name of the plugin

• pv – the ParticleVector that we ll work with

• implicit_surface_func – a scalar field function that has the required surface as zero
level set

• velocity_field – vector field that describes the velocity on the inlet (will be evaluated
on the surface only)

• resolution – grid size used to discretize the surface

• number_density – number density of the inserted solvent

• kBT – temperature of the inserted solvent

createVirialPressurePlugin(state: MirState, name: str, pv: ParticleVectors.ParticleVector, region-
Func: Callable[[real3], float], h: real3, dump_every: int, path: str)
→ Tuple[Plugins.SimulationPlugin, Plugins.PostprocessPlugin]

This plugin computes the virial pressure from a given ParticleVector. Note that the stress computation
must be enabled with the corresponding stressName. This returns the total internal virial part only (no tem-
perature term). Note that the volume is not devided in the result, the user is responsible to properly scale the
output.

Parameters

• name – name of the plugin

• pv – concerned ParticleVector

• regionFunc – predicate for the concerned region; positive inside the region and negative
outside

• h – grid size for representing the predicate onto a grid

• dump_every – report total pressure every this many time-steps

• path – the folder name in which the file will be dumped

createWallForceCollector(state: MirState, name: str, wall: Walls.Wall, pvFrozen: ParticleVec-
tors.ParticleVector, sample_every: int, dump_every: int, filename: str,
detailed_dump: bool=False) → Tuple[Plugins.SimulationPlugin, Plug-
ins.PostprocessPlugin]

This plugin collects and averages the total force exerted on a given wall. The result has 2 components:

• bounce back: force necessary to the momentum change

• frozen particles: total interaction force exerted on the frozen particles

Parameters

• name – name of the plugin

• wall – The Wall to collect forces from

• pvFrozen – corresponding frozen ParticleVector

• sample_every – sample every this number of time steps

• dump_every – dump every this number of time steps

• filename – output filename (csv format)

• detailed_dump – if True, will dump separately the bounce contribution and the rest. If
False, only the sum is dumped.

84

createWallRepulsion(state: MirState, name: str, pv: ParticleVectors.ParticleVector, wall: Walls.Wall,
C: float, h: float, max_force: float) → Tuple[Plugins.SimulationPlugin, Plug-
ins.PostprocessPlugin]

This plugin will add force on all the particles that are nearby a specified wall. The motivation of this plugin is as
follows. The particles of regular PVs are prevented from penetrating into the walls by Wall Bouncers. However,
using Wall Bouncers with Object Vectors may be undesirable (e.g. in case of a very viscous membrane) or
impossible (in case of rigid objects). In these cases one can use either strong repulsive potential between the
object and the wall particle or alternatively this plugin. The advantage of the SDF-based repulsion is that small
penetrations won’t break the simulation.

The force expression looks as follows:

F(r) = ∇𝑆(r) ·

{︃
0, 𝑆(r) < −ℎ,

min(𝐹max, 𝐶(𝑆(r) + ℎ)), 𝑆(r) > −ℎ,

where 𝑆 is the SDF of the wall, 𝐶, 𝐹max and ℎ are parameters.

Parameters

• name – name of the plugin

• pv – ParticleVector that we’ll work with

• wall – Wall that defines the repulsion

• C – 𝐶

• h – ℎ

• max_force – 𝐹𝑚𝑎𝑥

15 Utils

Utility functions that do not need any mirheo coordinator. Most of these functions are wrapped by the __main__.py
file and can be called directly from the command line:

python -m mirheo --help

15.1 Summary

get_all_compile_options() Return all compile time options used in the current in-
stallation in the form of a dictionary.

get_compile_option(key) Fetch a given compile time option currently in use.

15.2 Details

get_all_compile_options()→ Dict[str, str]
Return all compile time options used in the current installation in the form of a dictionary.

get_compile_option(key: str)→ str
Fetch a given compile time option currently in use. :param key: the option name.

Available names can be found from the get_all_compile_options command.

85

16 Overview

16.1 Task Dependency Graph

The simulation is composed of a set of tasks that have dependencies between them, e.g. the forces must be computed
before integrating the particles velocities and positions. The following graph represents the tasks that are executed at
every time step and there dependencies:

17 Coding Conventions

In this section we list a guidelines to edit/add code to Mirheo.

17.1 Naming

Variables

Local variable names and paramters follow camelCase format starting with a lower case:

int myInt; // OK
int MyInt; // not OK
int my_int; // not OK

Member variable names inside a class (not for struct) have a trailing _:

class MyClass
{
private:

int myInt_; // OK
int myInt; // not OK
int my_int_; // not OK

};

Types, classes

Class names (and all types) have a camelCase format and start with an upper case letter:

class MyClass; // OK
using MyIntType = int; // OK
class My_Class; // Not OK

Functions

Functions and public member functions follow the same rules as local variables. They should state an action and must
be meaningfull, especially when they are exposed to the rest of the library.

Mesh readOffFile(std::string fileName); // OK
Mesh ReadOffFile(std::string fileName); // not OK
Mesh read(std::string fileName); // not precise enough naming out of context

private member functions have an additional _ in front:

86

Plugins: before particles distribution

Plugins: after integration

Plugins: before integration

Plugins: serialize and send

Plugins: before forces

Plugins: before cell lists

Object redistribute finalize

Object redistribute init

Particle redistribute finalize

Particle redistribute init

Wall check

Wall bounce

Correct object belonging

Halo object bounce

Local object bounce

Clear object local forces

Clear object halo forces

Clear halo object intermediate

Clear local object intermediate

Object reverse final: finalize

Object reverse final: init

Object reverse intermediate: finalize

Object reverse intermediate: init

Object halo intermediate finalize

Object halo intermediate init

Object halo final finalize

Object halo final init

Accumulate forces

Halo forces

Local forces

Particle halo final finalize

Particle halo final init

Clear forces

Gather intermediate

Accumulate intermediate

Halo intermediate

Local intermediate

Particle halo intermediate finalize

Particle halo intermediate init

Particle clear intermediate

Integration

Build cell-lists

Checkpoint

Fig. 15: The task dependency graph of a single time step in Mirheo.

87

class MyClass
{
public:

void doSomething();
private:

void _doSubTask(); // OK
void doSubTask(); // Not OK
void _do_sub_task(); // Not OK

};

namespaces

Namespaces are written in snake_case. This allows to distinguish them from class names easily.

17.2 Coding practices

Use modern C++ whenever possible. Refer to c++ core guidelines up to C++ 14. Some exceptions in Mirheo:

• Do not fail with exceptions. Mirheo crashes with the die method from the logger. This will print the full
stacktrace.

17.3 Style

The indentation uses 4 spaces (no tabs). Here are a few coding examples of the style:

// loops
for (int i = 0; i < n; ++i)
{

// multi line commands
...

}

for (int i = 0; i < n; ++i)
// one line command

// if
if (condition)

doThat();
else

doThis();

// for multi line, all entries must have braces
if (condition)
{

doThat();
andThis();

}
else
{

doThis();
}

More can be found directly in the code.

88

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

17.4 Includes

Every header file must include all files required such that it compiles on its own. The includes must be grouped into 3
groups with the following order:

1. local files (relative path)

2. mirheo files (path relative to mirheo src dir)

3. external libraries and std library

Each subgroup must be sorted alphabetically. The first group has the quotes style while the other groups must use
bracket style.

Example:

#include "data_manager.h"

#include <mirheo/core/containers.h>
#include <mirheo/core/datatypes.h>
#include <mirheo/core/mirheo_object.h>
#include <mirheo/core/utils/pytypes.h>

#include <memory>
#include <string>
#include <vector>

18 Library API

18.1 Analytic Shapes

Utility classes used to represent closed shapes with an implicit function. They must all have the same interface.

class Capsule
Represents a capsule.

A capsule is represented by a segment and a radius. Its surfae is the set of points whose distance to the segment
is equal to the radius.

In more visual terms, a capsule looks like a finite cylinder with two half spheres on its ends.

The capsule is centered at the origin and oriented along the z axis.

Public Functions

Capsule(real R, real L)
Construct a Capsule.

Parameters

• R: the radius of the capsule. Must be positive.

• L: the length of the segment used to represent the capsule. Must be positive.

89

real inOutFunction(real3 r) const
Implicit surface representation.

This scalar field is a smooth function of the position. It is negative inside the capsule and positive outside.
The zero level set of that field is the surface of the capsule.

Return The value of the field at the given position.

Parameters

• r: The position at which to evaluate the in/out field.

real3 normal(real3 r) const
Get the normal pointing outside the capsule.

This vector field is defined everywhere in space. On the surface, it represents the normal vector of the
surface.

Return The normal at r (length of this return must be 1).

Parameters

• r: The position at which to evaluate the normal.

real3 inertiaTensor(real totalMass) const
Get the inertia tensor of the capsule in its frame of reference.

Return The diagonal of the inertia tensor.

Parameters

• totalMass: The total mass of the capsule.

Public Static Attributes

const char *desc
the description of shape.

class Cylinder
Represents a finite cylinder.

The cylinder is centered at the origin and is oriented along the z axis. It is fully described by its length and its
radius.

Public Functions

Cylinder(real R, real L)
Constructs a Cylinder.

Parameters

• R: the radius of the cylinder. Must be positive

• L: the length of the cylinder. Must be positive.

real inOutFunction(real3 r) const
Implicit surface representation.

This scalar field is a smooth function of the position. It is negative inside the cylinder and positive outside.
The zero level set of that field is the surface of the cylinder.

90

Return The value of the field at the given position.

Parameters

• r: The position at which to evaluate the in/out field.

real3 normal(real3 r) const
Get the normal pointing outside the cylinder.

This vector field is defined everywhere in space. On the surface, it represents the normal vector of the
surface.

Return The normal at r (length of this return must be 1).

Parameters

• r: The position at which to evaluate the normal.

real3 inertiaTensor(real totalMass) const
Get the inertia tensor of the cylinder in its frame of reference.

Return The diagonal of the inertia tensor.

Parameters

• totalMass: The total mass of the cylinder.

Public Static Attributes

const char *desc
the description of shape.

class Ellipsoid
Represents an ellipsoid.

The ellipsoid is centered at the origin and oriented along its principal axes. the three radii are passed through
the axes variable. The surface is described implicitly by the zero level set of:(︂

𝑥

𝑎𝑥

)︂2

+

(︂
𝑦

𝑎𝑦

)︂2

+

(︂
𝑧

𝑎𝑧

)︂2

= 1

Public Functions

Ellipsoid(real3 axes)
Construct a Ellipsoid object.

Parameters

• axes: the “radius” along each principal direction.

real inOutFunction(real3 r) const
Implicit surface representation.

This scalar field is a smooth function of the position. It is negative inside the ellipsoid and positive outside.
The zero level set of that field is the surface of the ellipsoid.

Return The value of the field at the given position.

Parameters

91

• r: The position at which to evaluate the in/out field.

real3 normal(real3 r) const
Get the normal pointing outside the ellipsoid.

This vector field is defined everywhere in space. On the surface, it represents the normal vector of the
surface.

Return The normal at r (length of this return must be 1).

Parameters

• r: The position at which to evaluate the normal.

real3 inertiaTensor(real totalMass) const
Get the inertia tensor of the ellipsoid in its frame of reference.

Return The diagonal of the inertia tensor.

Parameters

• totalMass: The total mass of the ellipsoid.

Public Static Attributes

const char *desc
the description of shape.

18.2 Bouncers

See also the user interface.

Base class

class Bouncer : public mirheo::MirSimulationObject
Avoid penetration of particles inside onjects.

Interface class for Bouncers. Bouncers are responsible to reflect particles on the surface of the attached object.
Each Bouncer class needs to attach exactly one ObjectVector before performing the bounce.

Subclassed by mirheo::BounceFromMesh, mirheo::BounceFromRigidShape< Shape >,
mirheo::BounceFromRod

Public Functions

Bouncer(const MirState *state, std::string name)
Base Bouncer constructor.

Parameters

• state: Simulation state.

• name: Name of the bouncer.

92

virtual void setup(ObjectVector *ov)
Second initialization stage.

This method must be called before calling any other method of this class.

Parameters

• ov: The ObjectVector to attach to that Bouncer.

ObjectVector *getObjectVector()

Return The attached ObjectVector

virtual void setPrerequisites(ParticleVector *pv)
Setup prerequisites to a given ParticleVector.

Add additional properties to a ParticleVector to make it compatible with the exec() method. The default
implementation does not add any properties.

Parameters

• pv: The ParticleVector that will be bounced

void bounceLocal(ParticleVector *pv, CellList *cl, cudaStream_t stream)
Perform the reflection of local particles onto the local attached objects surface.

Parameters

• pv: The ParticleVector that will be bounced

• cl: The CellList attached to pv

• stream: The cuda stream used for execution

void bounceHalo(ParticleVector *pv, CellList *cl, cudaStream_t stream)
Perform the reflection of local particles onto the halo attached objects surface.

Parameters

• pv: The ParticleVector that will be bounced

• cl: The CellList attached to pv

• stream: The cuda stream used for execution

virtual std::vector<std::string> getChannelsToBeExchanged() const = 0

Return list of channel names of the attached object needed before bouncing

virtual std::vector<std::string> getChannelsToBeSentBack() const

Return list of channel names of the attached object that need to be exchanged after bouncing

Derived classes

class BounceFromMesh : public mirheo::Bouncer
Bounce particles against a triangle mesh.

• if the attached object is a RigidObjectVector, the bounced particles will transfer (atomically) their change
of momentum into the force and torque of the rigid object.

93

• if the attached object is a not RigidObjectVector, the bounced particles will transfer (atomically) their
change of momentum into the force of the three vertices which form the colliding triangle.

This class will fail if the object does not have a mesh representing its surfece.

Public Functions

BounceFromMesh(constMirState *state, const std::string &name, VarBounceKernel varBounceK-
ernel)

Construct a BounceFromMesh object.

Parameters

• state: Simulation state

• name: Name of the bouncer

• varBounceKernel: How are the particles bounced

void setup(ObjectVector *ov)
If ov is a rigid object, this will ask it to keep its old motions accross exchangers.

Otherwise, ask ov to keep its old positions accross exchangers.

void setPrerequisites(ParticleVector *pv)
Will ask pv to keep its old positions (not in persistent mode)

std::vector<std::string> getChannelsToBeExchanged() const

Return list of channel names of the attached object needed before bouncing

std::vector<std::string> getChannelsToBeSentBack() const

Return list of channel names of the attached object that need to be exchanged after bouncing

The following class employs Analytic Shapes implicit surface representation.

template <class Shape>
class BounceFromRigidShape : public mirheo::Bouncer

Bounce particles against an RigidShapedObjectVector.

Particles are bounced against an analytical shape on each object of the attached ObjectVector. When bounced,
the particles will transfer (atomically) their change of momentum into the force and torque of the rigid objects.

Template Parameters

• Shape: A class following the AnalyticShape interface

This class only works with RigidShapedObjectVector<Shape> objects. It will fail at setup time if the attached
object is not rigid.

Public Functions

BounceFromRigidShape(const MirState *state, const std::string &name, VarBounceKernel var-
BounceKernel, int verbosity)

Construct a BounceFromRigidShape object.

Parameters

• state: Simulation state

94

• name: Name of the bouncer

• varBounceKernel: How are the particles bounced

• verbosity: 0: no print; 1 print to console the rescue failures; 2 print to console all failures.

void setup(ObjectVector *ov)
Will ask ov to keep its old motions information persistently.

This method will die if ov is not of type RigidObjectVector.

void setPrerequisites(ParticleVector *pv)
Will ask pv to keep its old positions (not in persistent mode)

std::vector<std::string> getChannelsToBeExchanged() const

Return list of channel names of the attached object needed before bouncing

std::vector<std::string> getChannelsToBeSentBack() const

Return list of channel names of the attached object that need to be exchanged after bouncing

class BounceFromRod : public mirheo::Bouncer
Bounce particles against rods.

The particles are reflacted against the set of capsules around each segment forming the rod. This class will fail
if the attached object is not a RodObjectVector

Public Functions

BounceFromRod(const MirState *state, const std::string &name, real radius, VarBounceKernel
varBounceKernel)

Construct a BounceFromRod object.

Parameters

• state: Simulation state

• name: Name of the bouncer

• radius: The radius of the capsules attached to each segment

• varBounceKernel: How are the particles bounced

void setup(ObjectVector *ov)
Ask ov to keep its old motions accross persistently.

This method will die if ov is not of type RodObjectVector.

void setPrerequisites(ParticleVector *pv)
Will ask pv to keep its old positions (not in persistent mode)

std::vector<std::string> getChannelsToBeExchanged() const

Return list of channel names of the attached object needed before bouncing

std::vector<std::string> getChannelsToBeSentBack() const

Return list of channel names of the attached object that need to be exchanged after bouncing

95

Utilities

class BounceBack
Implements bounce-back reflection.

This bounce kernel reverses the velocity of the particle in the frame of reference of the surface.

Public Functions

void update(std::mt19937 &rng)
Does nothing, just to be consistent with the inteface.

real3 newVelocity(real3 uOld, real3 uWall, real3 n, real mass) const
Compute the velocity after bouncing the particle.

The velocity is chosen such that the average between the new and old velocities of the particle is that of
the wall surface at the collision point.

Parameters

• uOld: The velocity of the particle at the previous time step.

• uWall: The velocity of the wall surface at the collision point.

• n: The wall surface normal at the collision point.

• mass: The particle mass.

class BounceMaxwell
Implements reflection with Maxwell scattering.

This bounce kernel sets the particle velocity to the surface one with an additional random term drawed from
Maxwell distribution. The kernel tries to make the random term have a positive dot product with the surface
normal.

Public Functions

BounceMaxwell(real kBT)
Construct a BounceMaxwell object.

Parameters

• kBT: The temperature used to sample the velocity

void update(std::mt19937 &rng)
Update internal state, must be called before use.

Parameters

• rng: A random number generator.

real3 newVelocity(real3 uOld, real3 uWall, real3 n, real mass) const
Compute the velocity after bouncing the particle.

The velocity is chosen such that it is sampled by a Maxwelian distribution and has a positive dot product
with the wall surface normal.

96

Parameters

• uOld: The velocity of the particle at the previous time step.

• uWall: The velocity of the wall surface at the collision point.

• n: The wall surface normal at the collision point.

• mass: The particle mass.

18.3 Cell-Lists

Cell-lists are used to map from space to particles and vice-versa.

Internal structure

A cell list is composed of:

1. The representation of the cells geometry (here a uniform grid): see mirheo::CellListInfo

2. Number of particles per cell

3. Index of the first particle in each cell

4. The particle data, reordered to match the above structure.

API

class CellListInfo
A device-compatible structure that represents the cell-lists structure.

Contains geometric info (number of cells, cell sizes) and associated particles info (number of particles per cell
and cell-starts).

Subclassed by mirheo::CellList

Public Functions

CellListInfo(real3 h, real3 localDomainSize)
Construct a CellListInfo object.

This will create a cell-lists structure with cell sizes which are larger or equal to h, such that the number of
cells fit exactly inside the local domain size.

Parameters

• h: The size of a single cell along each dimension

• localDomainSize: Size of the local domain

CellListInfo(real rc, real3 localDomainSize)
Construct a CellListInfo object.

This will create a cell-lists structure with cell sizes which are larger or equal to rc, such that the number
of cells fit exactly inside the local domain size.

Parameters

• rc: The minimum size of a single cell along every dimension

97

• localDomainSize: Size of the local domain

__device__ __host__ int encode(int ix, int iy, int iz) const
map 3D cell indices to linear cell index.

Return Linear cell index

Parameters

• ix: Cell index in the x direction

• iy: Cell index in the y direction

• iz: Cell index in the z direction

__device__ __host__ void decode(int cid, int &ix, int &iy, int &iz) const
map linear cell index to 3D cell indices.

Parameters

• cid: Linear cell index

• ix: Cell index in the x direction

• iy: Cell index in the y direction

• iz: Cell index in the z direction

__device__ __host__ int encode(int3 cid3) const
see encode()

__device__ __host__ int3 decode(int cid) const
see decode()

template <CellListsProjection Projection = CellListsProjection::Clamp>
__device__ __host__ int3 getCellIdAlongAxes(const real3 x) const

Map from position to cell indices.

Return cell indices

Template Parameters

• Projection: if the cell indices must be clamped or not

Parameters

• x: The position in local coordinates

template <CellListsProjection Projection = CellListsProjection::Clamp, typename T>
__device__ __host__ int getCellId(const T x) const

Map from position to linear indices.

Warning: If The projection is set to CellListsProjection::NoClamp, this function will return -1 if the
particle is outside the subdomain.

Return linear cell index

Template Parameters

• Projection: if the cell indices must be clamped or not

98

• T: The vector type that represents the position

Parameters

• x: The position in local coordinates

Public Members

int3 ncells
Number of cells along each direction in the local domain.

int totcells
total number of cells in the local domain

real3 localDomainSize
dimensions of the subdomain

real rc
cutoff radius

real3 h
dimensions of the cells along each direction

int *cellSizes = {nullptr}
number of particles contained in each cell

int *cellStarts = {nullptr}
exclusive prefix sum of cellSizes

int *order = {nullptr}
used to reorder particles when building the cell lists: order[pid] is the destination index of the particle
with index pid before reordering

class CellList : public mirheo::CellListInfo
Contains the cell-list data for a given ParticleVector.

As opposed to the PrimaryCellList class, it contains a copy of the attached ParticleVector. This means that the
original ParticleVector data will not be reorder but rather copied into this container. This is useful when several
CellList object can be attached to the same ParticleVector or if the ParticleVector must not be reordered such as
e.g. for ObjectVector objects.

Subclassed by mirheo::PrimaryCellList

Public Functions

CellList(ParticleVector *pv, real rc, real3 localDomainSize)
Construct a CellList object.

Parameters

• pv: The ParticleVector to attach.

• rc: The maximum cut-off radius that can be used with that cell list.

• localDomainSize: The size of the local subdomain

CellList(ParticleVector *pv, int3 resolution, real3 localDomainSize)
Construct a CellList object.

Parameters

99

• pv: The ParticleVector to attach.

• resolution: The number of cells along each dimension

• localDomainSize: The size of the local subdomain

CellListInfo cellInfo()

Return the device-compatible handler

virtual void build(cudaStream_t stream)
construct the cell-list associated with the attached ParticleVector

Parameters

• stream: The stream used to execute the process

virtual void accumulateChannels(const std::vector<std::string> &channelNames, cudaS-
tream_t stream)

Accumulate the channels from the data contained inside the cell-list container to the attached ParticleVec-
tor.

Parameters

• channelNames: List that contains the names of all the channels to accumulate

• stream: Execution stream

virtual void gatherChannels(const std::vector<std::string> &channelNames, cudaStream_t
stream)

Copy the channels from the attached ParticleVector to the cell-lists data.

Parameters

• channelNames: List that contains the names of all the channels to copy

• stream: Execution stream

void clearChannels(const std::vector<std::string> &channelNames, cudaStream_t stream)
Clear channels contained inside the cell-list.

Parameters

• channelNames: List that contains the names of all the channels to clear

• stream: Execution stream

template <typename ViewType>
ViewType getView() const

Create a view that points to the data contained in the cell-lists.

Return View that points to the cell-lists data

Template Parameters

• ViewType: The type of the view to create

template <typename T>
void requireExtraDataPerParticle(const std::string &name)

Add an extra channel to the cell-list.

100

Template Parameters

• T: The type of data to add

Parameters

• name: Name of the channel

LocalParticleVector *getLocalParticleVector()

Return The LocalParticleVector that contains the data in the cell-list

std::string getName() const

Return the name of the cell-list.

class PrimaryCellList : public mirheo::CellList
Contains the cell-list map for a given ParticleVector.

As opposed to the CellList class, the data is stored only in the ParticleVector. This means that the original
ParticleVector data will be reorder according to this cell-list. This allows to save memory and avoid extra
copies. On the other hand, this class must not be used with ObjectVector objects.

Public Functions

PrimaryCellList(ParticleVector *pv, real rc, real3 localDomainSize)
Construct a PrimaryCellList object.

Parameters

• pv: The ParticleVector to attach.

• rc: The maximum cut-off radius that can be used with that cell list.

• localDomainSize: The size of the local subdomain

PrimaryCellList(ParticleVector *pv, int3 resolution, real3 localDomainSize)
Construct a PrimaryCellList object.

Parameters

• pv: The ParticleVector to attach.

• resolution: The number of cells along each dimension

• localDomainSize: The size of the local subdomain

void build(cudaStream_t stream)
construct the cell-list associated with the attached ParticleVector

Parameters

• stream: The stream used to execute the process

void accumulateChannels(const std::vector<std::string> &channelNames, cudaStream_t stream)
Accumulate the channels from the data contained inside the cell-list container to the attached ParticleVec-
tor.

Parameters

101

• channelNames: List that contains the names of all the channels to accumulate

• stream: Execution stream

void gatherChannels(const std::vector<std::string> &channelNames, cudaStream_t stream)
Copy the channels from the attached ParticleVector to the cell-lists data.

Parameters

• channelNames: List that contains the names of all the channels to copy

• stream: Execution stream

18.4 Containers

A set of array containers to manage device, host and pinned memory.

class GPUcontainer
Interface of containers of device (GPU) data.

Subclassed by mirheo::DeviceBuffer< BelongingTags >, mirheo::DeviceBuffer< char >,
mirheo::DeviceBuffer< int >, mirheo::DeviceBuffer< int2 >, mirheo::DeviceBuffer< mirheo::Force
>, mirheo::DeviceBuffer< mirheo::MapEntry >, mirheo::DeviceBuffer< mirheo::TemplRigidMotion
>, mirheo::DeviceBuffer< real >, mirheo::DeviceBuffer< real4 >, mirheo::DeviceBuffer< T >,
mirheo::PinnedBuffer< T >, mirheo::PinnedBuffer< bool >, mirheo::PinnedBuffer< ChannelType >,
mirheo::PinnedBuffer< char >, mirheo::PinnedBuffer< CudaVarPtr >, mirheo::PinnedBuffer< dou-
ble >, mirheo::PinnedBuffer< double3 >, mirheo::PinnedBuffer< int >, mirheo::PinnedBuffer< int2
>, mirheo::PinnedBuffer< int3 >, mirheo::PinnedBuffer< mirheo::Force >, mirheo::PinnedBuffer<
mirheo::ParticleCheckerPlugin::Status >, mirheo::PinnedBuffer< msd_plugin::ReductionType >,
mirheo::PinnedBuffer< rdf_plugin::CountType >, mirheo::PinnedBuffer< real *>, mirheo::PinnedBuffer<
real >, mirheo::PinnedBuffer< real3 >, mirheo::PinnedBuffer< real4 >, mirheo::PinnedBuffer<
size_t >, mirheo::PinnedBuffer< stats_plugin::ReductionType >, mirheo::PinnedBuffer< unsigned
long long int >, mirheo::PinnedBuffer< vacf_plugin::ReductionType >, mirheo::PinnedBuffer<
virial_pressure_plugin::ReductionType >

Public Functions

virtual size_t size() const = 0

Return number of stored elements

virtual size_t datatype_size() const = 0

Return the size (in bytes) of a single element

virtual void *genericDevPtr() const = 0

Return pointer to device data

virtual void resize_anew(size_t n) = 0
resize the internal array.

No guarantee to keep the current data.

Parameters

• n: New size (in number of elements). Must be non negative.

102

virtual void resize(size_t n, cudaStream_t stream) = 0
resize the internal array.

Keeps the current data.

Parameters

• n: New size (in number of elements). Must be non negative.

• stream: Used to copy the data internally

virtual void clearDevice(cudaStream_t stream) = 0
Call cudaMemset on the array.

Parameters

• stream: Execution stream

virtual GPUcontainer *produce() const = 0
Create a new instance of the concrete container implementation.

template <typename T>
class DeviceBuffer : public mirheo::GPUcontainer

Data only on the device (GPU)

Never releases any memory, keeps a buffer big enough to store maximum number of elements it ever held
(except in the destructor).

Template Parameters

• T: The type of a single element to store.

Public Functions

DeviceBuffer(size_t n = 0)
Construct a DeviceBuffer of given size.

Parameters

• n: The initial number of elements

DeviceBuffer(const DeviceBuffer &b)
Copy constructor.

DeviceBuffer &operator=(const DeviceBuffer &b)
Assignment operator.

DeviceBuffer(DeviceBuffer &&b)
Move constructor; To enable std::swap()

DeviceBuffer &operator=(DeviceBuffer &&b)
Move assignment; To enable std::swap()

size_t datatype_size() const

Return the size (in bytes) of a single element

size_t size() const

Return number of stored elements

103

void *genericDevPtr() const

Return pointer to device data

void resize(size_t n, cudaStream_t stream)
resize the internal array.

Keeps the current data.

Parameters

• n: New size (in number of elements). Must be non negative.

• stream: Used to copy the data internally

void resize_anew(size_t n)
resize the internal array.

No guarantee to keep the current data.

Parameters

• n: New size (in number of elements). Must be non negative.

GPUcontainer *produce() const
Create a new instance of the concrete container implementation.

T *devPtr() const

Return device pointer to data

void clearDevice(cudaStream_t stream)
Call cudaMemset on the array.

Parameters

• stream: Execution stream

void clear(cudaStream_t stream)
clear the device data

template <typename Cont>
auto copy(const Cont &cont, cudaStream_t stream)

Copy data from another container of the same template type.

Can only copy from another DeviceBuffer of HostBuffer, but not PinnedBuffer.

Template Parameters

• Cont: The source container type. Must have the same data type than the current instance.

Parameters

• cont: The source container

• stream: Execution stream

auto copy(const DeviceBuffer<T> &cont)
synchronous copy

void copyFromDevice(const PinnedBuffer<T> &cont, cudaStream_t stream)
Copy the device data of a PinnedBuffer to the internal buffer.

104

Note The copy is performed asynchronously. The user must manually synchronize with the stream if
needed.

Parameters

• cont: the source container

• stream: The stream used to copy the data.

void copyFromHost(const PinnedBuffer<T> &cont, cudaStream_t stream)
Copy the host data of a PinnedBuffer to the internal buffer.

Note The copy is performed asynchronously. The user must manually synchronize with the stream if
needed.

Parameters

• cont: the source container

• stream: The stream used to copy the data.

template <typename T>
class HostBuffer

Data only on the host.

The data is allocated as pinned memory using the CUDA utilities. This allows to transfer asynchronously data
from the device (e.g. DeviceBuffer).

Never releases any memory, keeps a buffer big enough to store maximum number of elements it ever held
(except in the destructor).

Template Parameters

• T: The type of a single element to store.

Public Functions

HostBuffer(size_t n = 0)
construct a HostBuffer with a given size

Parameters

• n: The initial number of elements

HostBuffer(const HostBuffer &b)
copy constructor.

HostBuffer &operator=(const HostBuffer &b)
Assignment operator.

HostBuffer(HostBuffer &&b)
Move constructor; To enable std::swap()

HostBuffer &operator=(HostBuffer &&b)
Move assignment; To enable std::swap()

size_t datatype_size() const

Return the size of a single element (in bytes)

105

size_t size() const

Return the number of elements

T *hostPtr() const

Return pointer to host memory

T *data() const
For uniformity with std::vector.

T &operator[](size_t i)

Return element with given index

const T &operator[](size_t i) const

Return element with given index

void resize(size_t n)
resize the internal array.

Keeps the current data.

Parameters

• n: New size (in number of elements). Must be non negative.

void resize_anew(size_t n)
resize the internal array.

No guarantee to keep the current data.

Parameters

• n: New size (in number of elements). Must be non negative.

T *begin()
To support range-based loops.

T *end()
To support range-based loops.

const T *begin() const
To support range-based loops.

const T *end() const
To support range-based loops.

void clear()
Set all the bytes to 0.

template <typename Cont>
auto copy(const Cont &cont)

Copy data from a HostBuffer of the same template type.

template <typename Cont>
auto copy(const Cont &cont, cudaStream_t stream)

Copy data from a DeviceBuffer of the same template type.

void genericCopy(const GPUcontainer *cont, cudaStream_t stream)
Copy data from an arbitrary GPUcontainer.

106

Note the type sizes must be compatible (equal or multiple of each other)

Parameters

• cont: a pointer to the source container.

• stream: Stream used to copy the data.

template <typename T>
class PinnedBuffer : public mirheo::GPUcontainer

Device data with mirror host data.

Useful to transfer arrays between host and device memory.

The host data is allocated as pinned memory using the CUDA utilities. This allows to transfer asynchronously
data from the device.

Never releases any memory, keeps a buffer big enough to store maximum number of elements it ever held
(except in the destructor).

Note: Host and device data are not automatically synchronized! Use downloadFromDevice() and uploadToDe-
vice() MANUALLY to sync

Template Parameters

• T: The type of a single element to store.

Public Functions

PinnedBuffer(size_t n = 0)
Construct a PinnedBuffer with given number of elements.

Parameters

• n: initial number of elements. Must be non negative.

PinnedBuffer(const PinnedBuffer &b)
Copy constructor.

PinnedBuffer &operator=(const PinnedBuffer &b)
assignment operator

PinnedBuffer(PinnedBuffer &&b)
Move constructor; To enable std::swap()

PinnedBuffer &operator=(PinnedBuffer &&b)
Move assignment; To enable std::swap()

size_t datatype_size() const

Return the size (in bytes) of a single element

size_t size() const

Return number of stored elements

void *genericDevPtr() const

107

Return pointer to device data

void resize(size_t n, cudaStream_t stream)
resize the internal array.

Keeps the current data.

Parameters

• n: New size (in number of elements). Must be non negative.

• stream: Used to copy the data internally

void resize_anew(size_t n)
resize the internal array.

No guarantee to keep the current data.

Parameters

• n: New size (in number of elements). Must be non negative.

GPUcontainer *produce() const
Create a new instance of the concrete container implementation.

T *hostPtr() const

Return pointer to host data

T *data() const
For uniformity with std::vector.

T *devPtr() const

Return pointer to device data

T &operator[](size_t i)
allow array-like bracketed access to HOST data

const T &operator[](size_t i) const
allow array-like bracketed access to HOST data

T *begin()
To support range-based loops.

T *end()
To support range-based loops.

const T *begin() const
To support range-based loops.

const T *end() const
To support range-based loops.

void downloadFromDevice(cudaStream_t stream, ContainersSynch synch = Contain-
ersSynch::Synch)

Copy internal data from device to host.

Parameters

• stream: The stream used to perform the copy

108

• synch: Synchronicity of the operation. If synchronous, the call will block until the operation is
done.

void uploadToDevice(cudaStream_t stream)
Copy the internal data from host to device.

Parameters

• stream: The stream used to perform the copy

void clear(cudaStream_t stream)
Set all the bytes to 0 on both host and device.

void clearDevice(cudaStream_t stream)
Set all the bytes to 0 on device only.

void clearHost()
Set all the bytes to 0 on host only.

void copy(const DeviceBuffer<T> &cont, cudaStream_t stream)
Copy data from a DeviceBuffer of the same template type.

void copy(const HostBuffer<T> &cont)
Copy data from a HostBuffer of the same template type.

void copy(const PinnedBuffer<T> &cont, cudaStream_t stream)
Copy data from a PinnedBuffer of the same template type.

void copyDeviceOnly(const PinnedBuffer<T> &cont, cudaStream_t stream)
Copy data from device pointer of a PinnedBuffer of the same template type.

void copy(const PinnedBuffer<T> &cont)
synchronous copy

18.5 Datatypes

A set of simple POD structures.

struct Real3_int
Helper class for packing/unpacking real3 + integer into real4.

Public Functions

Real3_int(const Real3_int &x)
copy constructor

Real3_int &operator=(const Real3_int &x)
assignment operator

Real3_int()
defult constructor; NO default values!

Real3_int(real3 vecPart, integer intPart)
Constructor from vector and integer.

109

Real3_int(const real4 r4)
Constructor from 4 components vector; the last one will be reinterpreted to integer (not converted)

real4 toReal4() const

Return reinterpreted values packed in a real4 (no conversion)

void mark()
Mark this object; see isMarked().

Does not modify the integer part

bool isMarked() const

Return true if the object has been marked via mark()

Public Members

real3 v
vector part

integer i
integer part

Public Static Attributes

constexpr real mark_val = -8.0e10_r
A special value used to mark particles.

Marked particles will be deleted during cell list rebuild. For objects, objects with all particles marked will
be removed during object redistribution.

struct Particle
Structure that holds position, velocity and global index of one particle.

Due to performance reasons it should be aligned to 16 bytes boundary, therefore 8 bytes = 2 integer numbers
are extra. The integer fields are used to store the global index

Public Functions

Particle(const Particle &x)
Copy constructor uses efficient 16-bytes wide copies.

Particle &operator=(Particle x)
Assignment operator uses efficient 16-bytes wide copies.

Particle()
Default constructor.

Attention: The default constructor DOES NOT initialize any members!

void setId(int64_t id)
Set the global index of the particle.

int64_t getId() const

110

Return the global index of the particle

Particle(const real4 r4, const real4 u4)
Construct a Particle from two real4 entries.

Parameters

• r4: first three reals will be position (r), last one .w - i1 (reinterpreted, not converted)

• u4: first three reals will be velocity (u), last one .w - i2 (reinterpreted, not converted)

void readCoordinate(const real4 *addr, const int pid)
read position from array and stores it internally

Parameters

• addr: start of the array with size > pid

• pid: particle index

void readVelocity(const real4 *addr, const int pid)
read velocity from array and stores it internally

Parameters

• addr: pointer to the start of the array. Must be larger than pid

• pid: particle index

Real3_int r2Real3_int() const

Return packed r and i1 as Real3_int

real4 r2Real4() const
Helps writing particles back to real4 array.

Return packed r and i1 as real4

Real3_int u2Real3_int() const

Return packed u and i2 as Real3_int

real4 u2Real4() const
Helps writing particles back to real4 array.

Return packed u and i2 as real4

void write2Real4(real4 *pos, real4 *vel, int pid) const
Helps writing particles back to real4 arrays.

Parameters

• pos: destination array that contains positions

• vel: destination array that contains velocities

• pid: particle index

111

void mark()
mark the particle; this will erase its position information

bool isMarked() const

Return true if the particle has been marked

Public Members

real3 r
position

integer i1
lower part of particle id

real3 u
velocity

integer i2 = {0}
higher part of particle id

struct Force
Structure that holds force as real4 (to reduce number of load/store instructions)

Due to performance reasons it should be aligned to 16 bytes boundary. The integer field is not reserved for
anything at the moment

Public Functions

Force()
default constructor, does NOT initialize anything

Force(const real3 vecPart, int intPart)
Construct a Force from a vector part and an integer part.

Force(const real4 f4)
Construct a force from real4.

The 4th component will be reinterpreted as an integer (not converted)

real4 toReal4() const

Return packed real part + integer part as real4

Public Members

real3 f
Force value.

integer i
extra integer variable (unused)

struct Stress
Store a symmetric stess tensor in 3 dimensions.

Since it is symmetric, only 6 components are needed (diagonal and upper part

112

Public Members

real xx
x diagonal term

real xy
xy upper term

real xz
xz upper term

real yy
y diagonal term

real yz
yz upper term

real zz
z diagonal term

struct COMandExtent
Contains the rigid object center of mass and bounding box Used e.g.

to decide which domain the objects belong to and what particles / cells are close to it

Public Members

real3 com
center of mass

real3 low
lower corner of the bounding box

real3 high
upper corner of the bounding box

struct ComQ
Contains coordinates of the center of mass and orientation of an object Used to initialize object positions.

Public Members

real3 r
object position

real4 q
quaternion that represents the orientation

18.6 Domain

In Mirheo, the simulation domain has a rectangular shape subdivided in equal subdomains. Each simulation rank is
mapped to a single subdomain in a cartesian way. Furthermore, we distinguish the global coordinates (that are the same
for all ranks) from the local coordinates (different from one subdomain to another). The mirheo::DomainInfo
utility class provides a description of the domain, subdomain and a mapping between the coordinates of these two
entities.

113

API

DomainInfo mirheo::createDomainInfo(MPI_Comm cartComm, real3 globalSize)
Construct a DomainInfo.

Return The DomainInfo

Parameters

• cartComm: A cartesian MPI communicator of the simulation

• globalSize: The size of the whole simulation domain

struct DomainInfo
Describes the simulation global and local domains, with a mapping between the two.

The simulation domain is a rectangular box. It is splitted into smaller rectangles, one by simulation rank. Each
of these subdomains have a local system of coordinates, centered at the center of these rectangular boxes. The
global system of coordinate has the lowest corner of the domain at (0,0,0).

Public Functions

real3 local2global(real3 x) const
Convert local coordinates to global coordinates.

Return The position x expressed in global coordinates

Parameters

• x: The local coordinates in the current subdomain

real3 global2local(real3 x) const
Convert global coordinates to local coordinates.

Return The position x expressed in local coordinates

Parameters

• x: The global coordinates in the simulation domain

template <typename RealType3>
bool inSubDomain(RealType3 xg) const

Checks if the global coordinates xg are inside the current subdomain.

Return true if xg is inside the current subdomain, false otherwise

Parameters

• xg: The global coordinates in the simulation domain

Public Members

real3 globalSize
Size of the whole simulation domain.

real3 globalStart
coordinates of the lower corner of the local domain, in global coordinates

114

real3 localSize
size of the sub domain in the current rank.

18.7 Exchangers

A set of classes responsible to:

• exchange ghost paticles between neighbouring ranks

• redistribite particles accross ranks

The implementation is split into two parts:

• exchanger classes, that are responsible to pack and unpack the data from mirheo::ParticleVector to
buffers (see also Packers).

• communication engines, that communicate the buffers created by the exchangers between ranks. The user must
instantiate one engine per exchanger.

Exchanger classes

Different kind of exchange are implemented in Mirheo:

• Redistribution: the data is migrated from one rank to another (see mirheo::ParticleRedistributor
and mirheo::ObjectRedistributor)

• Ghost particles: the data is copied from one rank to possibly multiple ones (see
mirheo::ParticleHaloExchanger, mirheo::ObjectHaloExchanger and
mirheo::ObjectExtraExchanger)

• Reverse exchange: data is copied from possibly multiple ranks to another. This can be used to gather
e.g. the forces computed on ghost particles, and therefore is related to the ghost particles exchangers. (see
mirheo::ObjectReverseExchanger)

In general, the process consists in:

1. Create a map from particle/object to buffer(s) (this step might be unnecessary for e.g.
mirheo::ObjectExtraExchanger and mirheo::ObjectReverseExchanger)

2. Pack the data into the send buffers according to the map

3. The communication engines communicate the data to the recv buffers (not the exchangers job)

4. Unpack the data from recv buffers to a local container.

Interface

class Exchanger
Pack and unpack ParticleVector objects for exchange.

The user should register one (or more) ExchangeEntity objects that represent the data to exchange. The functions
interface functions can then be called in the correct order to pack and unpack the data.

Designed to be used with an ExchangeEngine.

Subclassed by mirheo::ObjectExtraExchanger, mirheo::ObjectHaloExchanger, mirheo::ObjectRedistributor,
mirheo::ObjectReverseExchanger, mirheo::ParticleHaloExchanger, mirheo::ParticleRedistributor

115

Public Functions

void addExchangeEntity(std::unique_ptr<ExchangeEntity> &&e)
register an ExchangeEntity in this exchanger.

Parameters

• e: The ExchangeEntity object to register. Will pass ownership.

ExchangeEntity *getExchangeEntity(size_t id)

Return ExchangeEntity with the given id (0 <= id < getNumExchangeEntities()).

const ExchangeEntity *getExchangeEntity(size_t id) const
see getExchangeEntity()

size_t getNumExchangeEntities() const

Return The number of registered ExchangeEntity.

virtual void prepareSizes(size_t id, cudaStream_t stream) = 0
Compute the sizes of the data to be communicated in the given ExchangeEntity.

After this call, the send.sizes, send.sizeBytes, send.offsets and send.offsetsBytes
of the ExchangeEntity are available on the CPU.

Parameters

• id: The index of the concerned ExchangeEntity

• stream: Execution stream

virtual void prepareData(size_t id, cudaStream_t stream) = 0
Pack the data managed by the given ExchangeEntity.

Note Must be executed after prepareSizes()

Parameters

• id: The index of the concerned ExchangeEntity

• stream: Execution stream

virtual void combineAndUploadData(size_t id, cudaStream_t stream) = 0
Unpack the received data.

After this call, the recv.sizes, recv.sizeBytes, recv.offsets and recv.offsetsBytes
of the ExchangeEntity must be available on the CPU and GPU before this call. Furthermore, the recv
buffers must already be on the device memory.

Parameters

• id: The index of the concerned ExchangeEntity

• stream: Execution stream

Note Must be executed after prepareData()

116

virtual bool needExchange(size_t id) = 0
Stats if the data of an ExchangeEntity needs to be exchanged.

If the ParticleVector didn’t change since the last exchange, there is no need to run the exchange again.
This function controls such behaviour.

Return true if exchange is required, false otherwise

Parameters

• id: The index of the concerned ExchangeEntity

Derived classes

class ParticleRedistributor : public mirheo::Exchanger
Pack and unpack data for particle redistribution.

The redistribution consists in moving (not copying) the particles from one rank to the other. It affects all
particles that have left the current subdomain. The redistribution is accelerated by making use of the cell-lists of
the ParticleVector. This allows to check only the particles that are on the boundary cells; However, this assumes
that only those particles leave the domain.

Public Functions

ParticleRedistributor()
default constructor

void attach(ParticleVector *pv, CellList *cl)
Add a ParticleVector to the redistribution.

Multiple ParticleVector objects can be attached to the same redistribution object.

Parameters

• pv: The ParticleVector to attach

• cl: The associated cell-list of pv.

class ObjectRedistributor : public mirheo::Exchanger
Pack and unpack data for object redistribution.

As opposed to particles, objects must be redistributed as a whole for two reasons:

• the particles of one object must stay into a contiguous chunk in memory

• the objects might have associated data per object (or per bisegments for rods)

The redistribution consists in moving (not copying) the object data from one rank to the other. It affects all
objects that have left the current subdomain (an object belongs to a subdomain if its center of mass is inside).

Public Functions

ObjectRedistributor()
default constructor

void attach(ObjectVector *ov)
Add an ObjectVector to the redistribution.

Multiple ObjectVector objects can be attached to the same redistribution object.

117

Parameters

• ov: The ObjectVector to attach

class ParticleHaloExchanger : public mirheo::Exchanger
Pack and unpack data for halo particles exchange.

The halo exchange consists in copying an image of all particles that are within one cut-off radius away to the
neighbouring ranks. This leaves the original ParticleVector local data untouched. The result of this operation is
stored in the halo LocalParticleVector.

The halo exchange is accelerated by making use of the associated CellList of the ParticleVector.

Public Functions

ParticleHaloExchanger()
default constructor

void attach(ParticleVector *pv, CellList *cl, const std::vector<std::string> &extraChannelNames)
Add a ParticleVector for halo exchange.

Multiple ParticleVector objects can be attached to the same halo exchanger.

Parameters

• pv: The ParticleVector to attach

• cl: The associated cell-list of pv

• extraChannelNames: The list of channels to exchange (additionally to the default positions
and velocities)

class ObjectHaloExchanger : public mirheo::Exchanger
Pack and unpack data for halo object exchange.

The halo exchange consists in copying an image of all objects with bounding box that is within one cut-off
radius away to the neighbouring ranks. This leaves the original ObjectVector local data untouched. The result
of this operation is stored in the halo LocalObjectVector.

This is needed only when the full object is needed on the neighbour ranks (e.g. Bouncer or ObjectBelong-
ingChecker).

Public Functions

ObjectHaloExchanger()
default constructor

void attach(ObjectVector *ov, real rc, const std::vector<std::string> &extraChannelNames)
Add a ObjectVector for halo exchange.

Multiple ObjectVector objects can be attached to the same halo exchanger.

Parameters

• ov: The ObjectVector to attach

• rc: The required cut-off radius

• extraChannelNames: The list of channels to exchange (additionally to the default positions
and velocities)

118

PinnedBuffer<int> &getSendOffsets(size_t id)

Return send offset within the send buffer (in number of elements) of the given ov

PinnedBuffer<int> &getRecvOffsets(size_t id)

Return recv offset within the send buffer (in number of elements) of the given ov

DeviceBuffer<MapEntry> &getMap(size_t id)

Return The map from LocalObjectVector to send buffer ids

class ObjectExtraExchanger : public mirheo::Exchanger
Pack and unpack extra data for halo object exchange.

This class only exchanges the additional data (not e.g. the default particle’s positions and velocities). It uses the
packing map from an external ObjectHaloExchanger. The attached ObjectVector objects must be the same as
the ones in the external ObjectHaloExchanger (and in the same order).

See ObjectHaloExchanger

Public Functions

ObjectExtraExchanger(ObjectHaloExchanger *entangledHaloExchanger)
Construct a ObjectExtraExchanger.

Parameters

• entangledHaloExchanger: The object that will contain the packing maps.

void attach(ObjectVector *ov, const std::vector<std::string> &extraChannelNames)
Add a ObjectVector for halo exchange.

Parameters

• ov: The ObjectVector to attach

• extraChannelNames: The list of channels to exchange

class ObjectReverseExchanger : public mirheo::Exchanger
Pack and unpack data from ghost particles back to the original bulk data.

The ghost particles data must come from a ObjectHaloExchanger object. The attached ObjectVector objects
must be the same as the ones in the external ObjectHaloExchanger (and in the same order).

Public Functions

ObjectReverseExchanger(ObjectHaloExchanger *entangledHaloExchanger)
Construct a ObjectReverseExchanger.

Parameters

• entangledHaloExchanger: The object that will create the ghost particles.

void attach(ObjectVector *ov, std::vector<std::string> channelNames)
Add an ObjectVector for reverse halo exchange.

Parameters

119

• ov: The ObjectVector to attach

• channelNames: The list of channels to send back

Exchange Entity

Helper classes responsible to hold the buffers of the packed data to be communicated.

struct BufferOffsetsSizesWrap
A device-compatible structure that holds buffer information for packing / unpacking data.

In general, there is one buffer per source/destination rank. The current implementation uses a single array that
contains all buffers in a contiguous way. The offsetsBytes values (one per buffer) state where each buffer start
within the array.

Public Functions

char *getBuffer(int bufId)

Return buffer with id bufId

Public Members

int nBuffers
number of buffers

char *buffer
device data pointer to the array containing all buffers

int *offsets
device array of size nBuffers+1 with i-th buffer start index (in number of elements)

int *sizes
device array of size nBuffers with i-th buffer size (in number of elements)

size_t *offsetsBytes
device array of size nBuffers+1 with i-th buffer start index (in number of bytes)

struct BufferInfos
Structure held on the host only that contains pack/unpack buffers and their sizes/offsets (see BufferOffsets-
SizesWrap).

Public Functions

void clearAllSizes(cudaStream_t stream)
set sizes and sizesBytes to zero on host and device

void resizeInfos(int nBuffers)
resize the size and offset buffers to support a given number of buffers

void uploadInfosToDevice(cudaStream_t stream)
upload all size and offset information from host to device

char *getBufferDevPtr(int bufId)

Return The device pointer to the buffer with the given index

120

Public Members

PinnedBuffer<int> sizes
number of elements in each buffer

PinnedBuffer<int> offsets
prefix sum of the above

PinnedBuffer<size_t> sizesBytes
number of bytes per buffer

PinnedBuffer<size_t> offsetsBytes
start of each buffer (in bytes) within the array

PinnedBuffer<char> buffer
all buffers in contiguous memory.

std::vector<MPI_Request> requests
send or recv requests associated to each buffer; only relevant for MPIExchangeEngine

class ExchangeEntity
Manages communication data per ParticleVector.

Each ExchangeEntity holds send and recv BufferInfos object for a given ParticleVector.

Public Functions

ExchangeEntity(std::string name, int uniqueId, ParticlePacker *packer)
Construct an ExchangeEntity object.

Parameters

• name: The name of the Corresponding ParticleVector

• uniqueId: A positive integer. This must be unique when a collection of ExchangeEntity objects
is registered in a single Exchanger.

• packer: The class used to pack/unpack the data into buffers

void computeRecvOffsets()
Compute the recv offsets and offsetsBytes on the host.

Note the recv sizes must be available on the host.

void computeSendOffsets()
Compute the send offsets and offsetsBytes on the host.

Note the send sizes must be available on the host.

void computeSendOffsets_Dev2Dev(cudaStream_t stream)
Compute the send offsets and offsetBytes on the device and download all sizes and offsets on the host.

Note The send sizes must be available on the device

void resizeSendBuf()
resize the internal send buffers; requires send offsetsBytes to be available on the host

121

void resizeRecvBuf()
resize the internal recv buffers; requires recv offsetsBytes to be available on the host

int getUniqueId() const

Return the unique id

BufferOffsetsSizesWrap wrapSendData()

Return a BufferOffsetsSizesWrap from the send BufferInfos

BufferOffsetsSizesWrap wrapRecvData()

Return a BufferOffsetsSizesWrap from the recv BufferInfos

const std::string &getName() const

Return the name of the attached ParticleVector

const char *getCName() const

Return the name of the attached ParticleVector in c-style string

Public Members

const int nBuffers = fragment_mapping::numFragments
equal to number of neighbours + 1 (for bulk)

const int bulkId = fragment_mapping::bulkId
The index of the bulk buffer.

BufferInfos send
buffers for the send data

BufferInfos recv
buffers for the recv data

std::vector<int> recvRequestIdxs
only relevant for MPIExchangeEngine

Communication engines

Interface

class ExchangeEngine
Base communication engine class.

Responsible to communicate the data managed by an Exchanger between different subdomains. The com-
munication is split into two parts so that asynchronous communication can be used. Every init() call must have
a single finalize() call that follows.

Subclassed by mirheo::MPIExchangeEngine, mirheo::SingleNodeExchangeEngine

Public Functions

ExchangeEngine(std::unique_ptr<Exchanger> &&exchanger)
Construct a communication engine.

122

Parameters

• exchanger: The Exchanger object that will prepare the data to communicate. The ownership
of exchanger is transfered to the engine.

virtual void init(cudaStream_t stream) = 0
Initialize the communication.

The data packing from the exchanger happens in this step.

Parameters

• stream: Execution stream used to prepare / download the data

virtual void finalize(cudaStream_t stream) = 0
Finalize the communication.

Must follow a pending init() call. The data unpacking from the exchanger happens in this step.

Parameters

• stream: Execution stream used to upload / unpack the data

Derived classes

class MPIExchangeEngine : public mirheo::ExchangeEngine
Engine implementing asynchronous MPI communication.

The pipeline is as follows:

• init() prepares the data into buffers, exchange the sizes, allocate recv buffers and post the asynchronous
communication calls.

• finalize() waits for the communication to finish and unpacks the data.

Public Functions

MPIExchangeEngine(std::unique_ptr<Exchanger> &&exchanger, MPI_Comm comm, bool
gpuAwareMPI)

Construct a MPIExchangeEngine.

Parameters

• exchanger: The class responsible to pack and unpack the data.

• comm: The cartesian communicator that represents the simulation domain.

• gpuAwareMPI: true to enable RDMA implementation. Only works if the MPI library has this
feature implemented.

void init(cudaStream_t stream)
Initialize the communication.

The data packing from the exchanger happens in this step.

Parameters

• stream: Execution stream used to prepare / download the data

123

void finalize(cudaStream_t stream)
Finalize the communication.

Must follow a pending init() call. The data unpacking from the exchanger happens in this step.

Parameters

• stream: Execution stream used to upload / unpack the data

class SingleNodeExchangeEngine : public mirheo::ExchangeEngine
Special engine optimized for single node simulations.

Instead of communicating thedata through MPI, the send and recv buffers are simply swapped.

Public Functions

SingleNodeExchangeEngine(std::unique_ptr<Exchanger> &&exchanger)
Construct a SingleNodeExchangeEngine.

Parameters

• exchanger: The class responsible to pack and unpack the data.

void init(cudaStream_t stream)
Initialize the communication.

The data packing from the exchanger happens in this step.

Parameters

• stream: Execution stream used to prepare / download the data

void finalize(cudaStream_t stream)
Finalize the communication.

Must follow a pending init() call. The data unpacking from the exchanger happens in this step.

Parameters

• stream: Execution stream used to upload / unpack the data

18.8 Field

Interface

class FieldDeviceHandler
a device-compatible structure that represents a scalar field

Subclassed by mirheo::Field

Public Functions

real operator()(real3 x) const
Evaluate the field at a given position.

Warning: The position must be inside the subdomain enlarged with a given margin (see c Field)

124

Return The scalar value at x

Parameters

• x: The position, in local coordinates

class Field : public mirheo::FieldDeviceHandler, public mirheo::MirSimulationObject
Driver class used to create a FieldDeviceHandler.

Subclassed by mirheo::FieldFromFile, mirheo::FieldFromFunction

Public Functions

Field(const MirState *state, std::string name, real3 h, real3 margin)
Construct a Field object.

Parameters

• state: The global state of the system

• name: The name of the field object

• h: the grid size

• margin: Additional margin to store in each rank

Field(Field&&)
move constructor

const FieldDeviceHandler &handler() const

Return The handler that can be used on the device

virtual void setup(const MPI_Comm &comm) = 0
Prepare the internal state of the Field.

Must be called before handler().

Parameters

• comm: The cartesian communicator of the domain.

Derived classes

class FieldFromFile : public mirheo::Field
a Field that can be initialized from a file

Public Functions

FieldFromFile(const MirState *state, std::string name, std::string fieldFileName, real3 h, real3
margin)

Construct a FieldFromFile object.

The format of the file is custom. It is a single file that contains a header followed by the data grid data in
binary format. The header is composed of two lines in ASCII format:

• domain size (3 floating point numbers)

• number of grid points (3 integers)

125

Parameters

• state: The global state of the system

• name: The name of the field object

• fieldFileName: The input file name

• h: the grid size

• margin: Additional margin to store in each rank

The data is an array that contains all grid values (x is the fast running index).

FieldFromFile(FieldFromFile&&)
move constructor

void setup(const MPI_Comm &comm)
Prepare the internal state of the Field.

Must be called before handler().

Parameters

• comm: The cartesian communicator of the domain.

class FieldFromFunction : public mirheo::Field
a Field that can be initialized from FieldFunction

Public Functions

FieldFromFunction(const MirState *state, std::string name, FieldFunction func, real3 h, real3
margin)

Construct a FieldFromFunction object.

The scalar values will be discretized and stored on the grid. This can be useful as one can have a general
scalar field configured on the host (e.g. from python) but usable on the device.

Parameters

• state: The global state of the system

• name: The name of the field object

• func: The scalar field function

• h: the grid size

• margin: Additional margin to store in each rank

FieldFromFunction(FieldFromFunction&&)
move constructor

void setup(const MPI_Comm &comm)
Prepare the internal state of the Field.

Must be called before handler().

Parameters

• comm: The cartesian communicator of the domain.

126

Utilities

template <typename FieldHandler>
real3 mirheo::computeGradient(const FieldHandler &field, real3 x, real h)

compute the gradient of a scalar field using finite differences on the device

Return The approximation of the gradient of field at x

Template Parameters

• FieldHandler: Type of device handler describing the field. Must contain parenthesis operator

Parameters

• field: The functor that describes the continuous scalar field

• x: The position at which to compute the gradient

• h: The step size used to compute the gradient

18.9 Initial Conditions

See also the user interface.

Base class

class InitialConditions
Initializer for objects in group PVs.

ICs are temporary objects and do not need name or checkpoint/restart mechanism. The exec() member function
is called by the Simulation when the ParticleVector is registered.

Subclassed by mirheo::FromArrayIC, mirheo::MembraneIC, mirheo::RandomChainsIC, mirheo::RestartIC,
mirheo::RigidIC, mirheo::RodIC, mirheo::StraightChainsIC, mirheo::UniformFilteredIC, mirheo::UniformIC,
mirheo::UniformSphereIC

Public Functions

virtual void exec(const MPI_Comm &comm, ParticleVector *pv, cudaStream_t stream) = 0
Initialize a given ParticleVector.

Parameters

• comm: A Cartesian MPI communicator from the simulation tasks

• pv: The resulting ParticleVector to be initialized (on chip data)

• stream: cuda stream

Derived classes

class RestartIC : public mirheo::InitialConditions
Initialize a ParticleVector from a checkpoint file.

Will call the restart() member function of the given ParticleVector.

127

Public Functions

RestartIC(const std::string &path)
Construct a RestartIC object.

Parameters

• path: The directory containing the restart files.

void exec(const MPI_Comm &comm, ParticleVector *pv, cudaStream_t stream)
Initialize a given ParticleVector.

Parameters

• comm: A Cartesian MPI communicator from the simulation tasks

• pv: The resulting ParticleVector to be initialized (on chip data)

• stream: cuda stream

class UniformIC : public mirheo::InitialConditions
Fill the domain with uniform number density.

Initialize particles uniformly with the given number density on the whole domain. The domain considered is
that of the ParticleVector. ObjectVector objects are not supported.

Public Functions

UniformIC(real numDensity)
Construct a UniformIC object.

Parameters

• numDensity: Number density of the particles to initialize

void exec(const MPI_Comm &comm, ParticleVector *pv, cudaStream_t stream)
Initialize a given ParticleVector.

Parameters

• comm: A Cartesian MPI communicator from the simulation tasks

• pv: The resulting ParticleVector to be initialized (on chip data)

• stream: cuda stream

class UniformSphereIC : public mirheo::InitialConditions
Fill the domain with uniform number density in a given ball.

Initialize particles uniformly with the given number density inside or outside a ball. The domain considered is
that of the ParticleVector. ObjectVector objects are not supported.

128

Public Functions

UniformSphereIC(real numDensity, real3 center, real radius, bool inside)
Construct a UniformSphereIC object.

Parameters

• numDensity: Number density of the particles to initialize

• center: Center of the ball

• radius: Radius of the ball

• inside: The particles will be inside the ball if set to true, outside otherwise.

void exec(const MPI_Comm &comm, ParticleVector *pv, cudaStream_t stream)
Initialize a given ParticleVector.

Parameters

• comm: A Cartesian MPI communicator from the simulation tasks

• pv: The resulting ParticleVector to be initialized (on chip data)

• stream: cuda stream

class UniformFilteredIC : public mirheo::InitialConditions
Fill the domain with uniform number density in a given region.

Initialize particles uniformly with the given number density on a specified region of the domain. The region is
specified by a filter functor. The domain considered is that of the ParticleVector. ObjectVector objects are not
supported.

Public Functions

UniformFilteredIC(real numDensity, PositionFilter filter)
Construct a UniformFilteredIC object.

Parameters

• numDensity: Number density of the particles to initialize

• filter: Indicator function that maps a position of the domain to a boolean value. It returns
true if the position is inside the region.

void exec(const MPI_Comm &comm, ParticleVector *pv, cudaStream_t stream)
Initialize a given ParticleVector.

Parameters

• comm: A Cartesian MPI communicator from the simulation tasks

• pv: The resulting ParticleVector to be initialized (on chip data)

• stream: cuda stream

class FromArrayIC : public mirheo::InitialConditions
Initialize particles to given positions and velocities.

ObjectVector objects are not supported.

129

Public Functions

FromArrayIC(const std::vector<real3> &pos, const std::vector<real3> &vel)
Construct a FromArrayIC object.

Parameters

• pos: list of initial positions in global coordinates. The size will determine the maximum number
of particles. Positions outside the domain are filtered out.

• vel: list of initial velocities. Must have the same size as pos.

void exec(const MPI_Comm &comm, ParticleVector *pv, cudaStream_t stream)
Initialize a given ParticleVector.

Parameters

• comm: A Cartesian MPI communicator from the simulation tasks

• pv: The resulting ParticleVector to be initialized (on chip data)

• stream: cuda stream

class RigidIC : public mirheo::InitialConditions
Initialize RigidObjectVector objects.

Initialize rigid objects from center of mass positions, orientations and frozen particles.

Public Functions

RigidIC(const std::vector<ComQ> &comQ, const std::string &xyzfname)
Construct a RigidIC object.

This method will die if the file does not exist.

Parameters

• comQ: List of (position, orientation) corresponding to each object. The size of the list is the
number of rigid objects that will be initialized.

• xyzfname: The name of a file in xyz format. It contains the list of coordinates of the frozen
particles (in the object frame of reference).

RigidIC(const std::vector<ComQ> &comQ, const std::vector<real3> &coords)
Construct a RigidIC object.

Parameters

• comQ: List of (position, orientation) corresponding to each object. The size of the list is the
number of rigid objects that will be initialized.

• coords: List of positions of the frozen particles of one object, in the object frame of reference.

RigidIC(const std::vector<ComQ> &comQ, const std::vector<real3> &coords, const
std::vector<real3> &comVelocities)

Construct a RigidIC object.

Parameters

130

• comQ: List of (position, orientation) corresponding to each object. The size of the list is the
number of rigid objects that will be initialized.

• coords: List of positions of the frozen particles of one object, in the object frame of reference.

• comVelocities: List of velocities of the velocities of the objects center of mass. Must have
the same size as comQ.

void exec(const MPI_Comm &comm, ParticleVector *pv, cudaStream_t stream)
Initialize a given ParticleVector.

Parameters

• comm: A Cartesian MPI communicator from the simulation tasks

• pv: The resulting ParticleVector to be initialized (on chip data)

• stream: cuda stream

class MembraneIC : public mirheo::InitialConditions
Initialize MembraneVector objects.

Initialize membrane objects from center of mass positions and orientations.

Subclassed by mirheo::MembraneWithTypeIdsIC

Public Functions

MembraneIC(const std::vector<ComQ> &comQ, real globalScale = 1.0)
Construct a MembraneIC object.

Parameters

• comQ: List of (position, orientation) corresponding to each object. The size of the list is the
number of membrane objects that will be initialized.

• globalScale: scale the membranes by this scale when placing the initial vertices.

void exec(const MPI_Comm &comm, ParticleVector *pv, cudaStream_t stream)
Initialize a given ParticleVector.

Parameters

• comm: A Cartesian MPI communicator from the simulation tasks

• pv: The resulting ParticleVector to be initialized (on chip data)

• stream: cuda stream

class MembraneWithTypeIdsIC : public mirheo::MembraneIC
Initialize MembraneVector objects with a typeId.

See MembraneIC. Attach an additional typeId field to each membrane. This is useful to have different membrane
forces without having many MembraneVector objects.

131

Public Functions

MembraneWithTypeIdsIC(const std::vector<ComQ> &comQ, const std::vector<int> &typeIds,
real globalScale = 1.0)

Construct a MembraneWithTypeIdsIC object.

Parameters

• comQ: List of (position, orientation) corresponding to each object. The size of the list is the
number of membrane objects that will be initialized.

• typeIds: List of type Ids. must have the same size as comQ.

• globalScale: scale the membranes by this scale when placing the initial vertices.

void exec(const MPI_Comm &comm, ParticleVector *pv, cudaStream_t stream)
Initialize a given ParticleVector.

Parameters

• comm: A Cartesian MPI communicator from the simulation tasks

• pv: The resulting ParticleVector to be initialized (on chip data)

• stream: cuda stream

class RodIC : public mirheo::InitialConditions
Initialize RodVector objects.

All rods will have the same torsion and centerline in there frame of reference. Each rod has a specific center of
mass and orientation.

Public Types

using MappingFunc3D = std::function<real3(real)>
a map from [0,1] to R^3

using MappingFunc1D = std::function<real(real)>
a map from [0,1] to R

Public Functions

RodIC(const std::vector<ComQ> &comQ, MappingFunc3D centerLine, MappingFunc1D torsion, real
a, real3 initialMaterialFrame = DefaultFrame)

Construct a RodIC object.

Parameters

• comQ: list of center of mass and orientation of each rod. This will determine the number of rods.
The rods with center of mass outside of the domain will be discarded.

• centerLine: Function describing the centerline in the frame of reference of the rod

• torsion: Function describing the torsion along the centerline.

• a: The width of the rod (the cross particles are separated by a).

• initialMaterialFrame: If set, this describes the orientation of the local material frame at
the start of the rod (in the object frame of reference). If not set, this is chosen arbitrarily.

132

void exec(const MPI_Comm &comm, ParticleVector *pv, cudaStream_t stream)
Initialize a given ParticleVector.

Parameters

• comm: A Cartesian MPI communicator from the simulation tasks

• pv: The resulting ParticleVector to be initialized (on chip data)

• stream: cuda stream

Public Static Attributes

const real Default
default real value, used to pass default parameters

const real3 DefaultFrame
default orientation, used to pass default parameters

18.10 Integrators

See also the user interface.

Base class

class Integrator : public mirheo::MirSimulationObject
Advance ParticleVector objects in time.

Integrator objects are responsible to advance the state of ParticleVector objects on the device. After exe-
cuted, the CellList of the ParticleVector object might be outdated; in that case, the Integrator is invalidates
the current cell-lists, halo and redistribution status on the ParticleVector.

Subclassed by mirheo::IntegratorConstOmega, mirheo::IntegratorMinimize, mirheo::IntegratorOscillate,
mirheo::IntegratorSubStep, mirheo::IntegratorSubStepShardlowSweep, mirheo::IntegratorTranslate,
mirheo::IntegratorVV< ForcingTerm >, mirheo::IntegratorVVRigid

Public Functions

Integrator(const MirState *state, const std::string &name)
Construct a Integrator object.

Parameters

• state: The global state of the system. The time step and domain used during the execution are
passed through this object.

• name: The name of the integrator.

virtual void setPrerequisites(ParticleVector *pv)
Setup conditions on the ParticledVector.

Set specific properties to pv that will be modified during execute(). Default: ask nothing. Must be called
before execute() with the same pv.

Parameters

133

• pv: The ParticleVector that will be advanced in time.

virtual void execute(ParticleVector *pv, cudaStream_t stream) = 0
Advance the ParticledVector for one time step.

Parameters

• pv: The ParticleVector that will be advanced in time.

• stream: The stream used for execution.

Derived classes

class IntegratorConstOmega : public mirheo::Integrator
Rotate ParticleVector objects with a constant angular velocity.

The center of rotation is defined in the global coordinate system.

Public Functions

IntegratorConstOmega(const MirState *state, const std::string &name, real3 center, real3
omega)

Construct a IntegratorConstOmega object.

Parameters

• state: The global state of the system. The time step and domain used during the execution are
passed through this object.

• name: The name of the integrator.

• center: The center of rotation, in global coordinates system.

• omega: The angular velocity of rotation.

void execute(ParticleVector *pv, cudaStream_t stream)
Advance the ParticledVector for one time step.

Parameters

• pv: The ParticleVector that will be advanced in time.

• stream: The stream used for execution.

class IntegratorMinimize : public mirheo::Integrator
Energy minimization integrator.

Updates positions using a force-based gradient descent, without affecting or reading velocities.

Public Functions

IntegratorMinimize(const MirState *state, const std::string &name, real maxDisplacement)

Parameters

• state: The global state of the system. The time step and domain used during the execution are
passed through this object.

134

• name: The name of the integrator.

• maxDisplacement: Maximum particle displacement per time step.

void execute(ParticleVector *pv, cudaStream_t stream)
Advance the ParticledVector for one time step.

Parameters

• pv: The ParticleVector that will be advanced in time.

• stream: The stream used for execution.

class IntegratorOscillate : public mirheo::Integrator
Restrict ParticleVector velocities to a sine wave.

Set velocities to follow a sine wave:

𝑣(𝑡) = 𝑣 cos

(︂
2𝜋𝑡

𝑇

)︂
The positions are integrated with forwards euler from the above velocities.

Public Functions

IntegratorOscillate(const MirState *state, const std::string &name, real3 vel, real period)

Parameters

• state: The global state of the system. The time step and domain used during the execution are
passed through this object.

• name: The name of the integrator.

• vel: Velocity magnitude.

• period: The time taken for one oscillation.

void execute(ParticleVector *pv, cudaStream_t stream)
Advance the ParticledVector for one time step.

Parameters

• pv: The ParticleVector that will be advanced in time.

• stream: The stream used for execution.

class IntegratorVVRigid : public mirheo::Integrator
Integrate RigidObjectVector objects given torque and force.

Advance the RigidMotion and the frozen particles of the RigidObjectVector objects. The particles of each object
are given the velocities corresponding to the rigid object motion.

Public Functions

IntegratorVVRigid(const MirState *state, const std::string &name)

Parameters

• state: The global state of the system. The time step and domain used during the execution are
passed through this object.

135

• name: The name of the integrator.

void setPrerequisites(ParticleVector *pv)
Setup conditions on the ParticledVector.

Set specific properties to pv that will be modified during execute(). Default: ask nothing. Must be called
before execute() with the same pv.

Parameters

• pv: The ParticleVector that will be advanced in time.

void execute(ParticleVector *pv, cudaStream_t stream)
Advance the ParticledVector for one time step.

Parameters

• pv: The ParticleVector that will be advanced in time.

• stream: The stream used for execution.

class IntegratorSubStepShardlowSweep : public mirheo::Integrator
Advance one MembraneVector associated with internal forces with smaller time step, similar to IntgratorSub-
Step.

We distinguish slow forces, which are computed outside of this class, from fast forces, computed only inside
this class. Each time step given by the simulation is split into n sub time steps. Each of these sub time step
advances the object using the non updated slow forces and the updated fast forces n times using the Shardlow
method.

This was motivated by the separation of time scale of membrane viscosity (fast forces) and solvent viscosity
(slow forces) in blood.

Warning: The fast forces should NOT be registered in the c Simulation. Otherwise, it will be executed
twice (by the simulation and by this class).

Public Functions

IntegratorSubStepShardlowSweep(const MirState *state, const std::string &name, int
substeps, BaseMembraneInteraction *fastForces, real gam-
maC, real kBT, int nsweeps)

construct a IntegratorSubStepShardlowSweep object.

Parameters

• state: The global state of the system. The time step and domain used during the execution are
passed through this object.

• name: The name of the integrator.

• substeps: Number of sub steps. Must be at least 1.

• fastForces: Internal interactions executed at each sub step.

• gammaC: The dissipation coefficient.

• kBT: The temperature in energy units.

• nsweeps: The number of iterations spent for each viscous update. Must be at least 1.

136

void execute(ParticleVector *pv, cudaStream_t stream)
Advance the ParticledVector for one time step.

Parameters

• pv: The ParticleVector that will be advanced in time.

• stream: The stream used for execution.

void setPrerequisites(ParticleVector *pv)
Setup conditions on the ParticledVector.

Set specific properties to pv that will be modified during execute(). Default: ask nothing. Must be called
before execute() with the same pv.

Parameters

• pv: The ParticleVector that will be advanced in time.

class IntegratorSubStep : public mirheo::Integrator
Advance one ObjectVector associated with internal forces with smaller time step.

We distinguish slow forces, which are computed outside of this class, from fast forces, computed only inside
this class. Each time step given by the simulation is split into n sub time steps. Each of these sub time step
advances the object using the non updated slow forces and the updated fast forces n times.

This was motivated by the separation of time scale of membrane viscosity (fast forces) and solvent viscosity
(slow forces) in blood.

Warning: The fast forces should NOT be registered in the c Simulation. Otherwise, it will be executed
twice (by the simulation and by this class).

Public Functions

IntegratorSubStep(const MirState *state, const std::string &name, int substeps, const
std::vector<Interaction *> &fastForces)

construct a IntegratorSubStep object.

This constructor will die if the fast forces need to exchange ghost particles with other ranks.

Parameters

• state: The global state of the system. The time step and domain used during the execution are
passed through this object.

• name: The name of the integrator.

• substeps: Number of sub steps

• fastForces: Internal interactions executed at each sub step.

void execute(ParticleVector *pv, cudaStream_t stream)
Advance the ParticledVector for one time step.

Parameters

• pv: The ParticleVector that will be advanced in time.

• stream: The stream used for execution.

137

void setPrerequisites(ParticleVector *pv)
Setup conditions on the ParticledVector.

Set specific properties to pv that will be modified during execute(). Default: ask nothing. Must be called
before execute() with the same pv.

Parameters

• pv: The ParticleVector that will be advanced in time.

class IntegratorTranslate : public mirheo::Integrator
Restrict ParticleVector velocities to a constant.

The positions are integrated with forwards euler with a constant velocity.

Public Functions

IntegratorTranslate(const MirState *state, const std::string &name, real3 vel)

Parameters

• state: The global state of the system. The time step and domain used during the execution are
passed through this object.

• name: The name of the integrator.

• vel: Velocity magnitude.

void execute(ParticleVector *pv, cudaStream_t stream)
Advance the ParticledVector for one time step.

Parameters

• pv: The ParticleVector that will be advanced in time.

• stream: The stream used for execution.

template <class ForcingTerm>
class IntegratorVV : public mirheo::Integrator

Advance individual particles with Velocity-Verlet scheme.

Template Parameters

• ForcingTerm: a functor that can add additional force to the particles depending on their position

Public Functions

IntegratorVV(const MirState *state, const std::string &name, ForcingTerm forcingTerm)

Parameters

• state: The global state of the system. The time step and domain used during the execution are
passed through this object.

• name: The name of the integrator.

• forcingTerm: Additional force added to the particles.

void execute(ParticleVector *pv, cudaStream_t stream)
Advance the ParticledVector for one time step.

138

Parameters

• pv: The ParticleVector that will be advanced in time.

• stream: The stream used for execution.

Forcing terms

The forcing terms must follow the same interface. Currently implemented forcing terms:

class ForcingTermNone
No forcing term.

Public Functions

void setup(ParticleVector *pv, real t)
Initialize internal state.

This method must be called at every time step

Parameters

• pv: the ParticleVector that will be updated

• t: Current simulation time

real3 operator()(real3 original, Particle p) const
Add the additional force to the current one on a particle.

Return The total force that must be applied to the particle

Parameters

• original: Original force acting on the particle

• p: Particle on which to apply the additional force

class ForcingTermConstDP
Apply a constant force independently of the position.

Public Functions

ForcingTermConstDP(real3 extraForce)
Construct a ForcingTermConstDP object.

Parameters

• extraForce: The force to add to every particle

void setup(ParticleVector *pv, real t)
Initialize internal state.

This method must be called at every time step.

Parameters

• pv: the ParticleVector that will be updated

• t: Current simulation time

139

real3 operator()(real3 original, Particle p) const
Add the additional force to the current one on a particle.

Return The total force that must be applied to the particle

Parameters

• original: Original force acting on the particle

• p: Particle on which to apply the additional force

class ForcingTermPeriodicPoiseuille
Apply equal but opposite forces in two halves of the global domain.

𝑓𝑥 =

{︃
𝐹, 𝑦𝑝 > 𝐿𝑦/2

−𝐹, 𝑦𝑝 6 𝐿𝑦/2

Similarly, if the force is parallel to the y axis, its sign will depend on z; parallel to z it will depend on x.

Public Types

enum Direction
Encode directions.

Values:

x

y

z

Public Functions

ForcingTermPeriodicPoiseuille(real magnitude, Direction dir)
Construct a ForcingTermPeriodicPoiseuille object.

Parameters

• magnitude: force magnitude to be applied.

• dir: The force will be applied parallel to the specified axis.

void setup(ParticleVector *pv, real t)
Initialize internal state.

This method must be called at every time step.

Parameters

• pv: the ParticleVector that will be updated

• t: Current simulation time

real3 operator()(real3 original, Particle p) const
Add the additional force to the current one on a particle.

Return The total force that must be applied to the particle

140

Parameters

• original: Original force acting on the particle

• p: Particle on which to apply the additional force

18.11 Interactions

Interface

class Interaction : public mirheo::MirSimulationObject
Compute forces from particle interactions.

We distinguish two kinds of interactions (see Stage enum type):

1. Intermediate ones, that do not compute any force, but compute intermediate quantities (e.g. densities in
SDPD).

2. Final ones, that compute forces (and possibly other quantities, e.g. stresses).

Subclassed by mirheo::BaseMembraneInteraction, mirheo::BasePairwiseInteraction,
mirheo::BaseRodInteraction, mirheo::ChainInteraction, mirheo::ObjectBindingInteraction,
mirheo::ObjectRodBindingInteraction

Public Types

enum Stage
Describes the stage of an interaction.

Values:

Intermediate

Final

using ActivePredicate = std::function<bool()>
Used to specify if a channel is active or not.

If a channel is inactive, the Interaction object can tell the simulation via this function object that the
concerned channel does not need to be exchanged.

Typically, this can store the simulation state and be active only at given time intervals. The most common
case is to be always active.

Public Functions

Interaction(const MirState *state, std::string name)
Constructs a Interaction object.

Parameters

• state: The global state of the system

• name: The name of the interaction

141

virtual void setPrerequisites(ParticleVector *pv1, ParticleVector *pv2, CellList *cl1, CellList
*cl2)

Add needed properties to the given ParticleVectors for future interactions.

Must be called before any other method of this class.

Parameters

• pv1: One ParticleVector of the interaction

• pv2: The other ParticleVector of that will interact

• cl1: CellList of pv1

• cl2: CellList of pv2

virtual void local(ParticleVector *pv1, ParticleVector *pv2, CellList *cl1, CellList *cl2, cudaS-
tream_t stream) = 0

Compute interactions between bulk particles.

The result of the interaction is added to the corresponding channel of the ParticleVector. The order of pv1
and pv2 may change the performance of the interactions.

Parameters

• pv1: first interacting ParticleVector

• pv2: second interacting ParticleVector. If it is the same as the pv1, self interactions will be
computed.

• cl1: cell-list built for the appropriate cut-off radius for pv1

• cl2: cell-list built for the appropriate cut-off radius for pv2

• stream: Execution stream

virtual void halo(ParticleVector *pv1, ParticleVector *pv2, CellList *cl1, CellList *cl2, cudaS-
tream_t stream) = 0

Compute interactions between bulk particles and halo particles.

The result of the interaction is added to the corresponding channel of the ParticleVector. In general, the
following interactions will be computed: pv1->halo() <> pv2->local() and pv2->halo() <> pv1->local().

Parameters

• pv1: first interacting ParticleVector

• pv2: second interacting ParticleVector. If it is the same as the pv1, self interactions will be
computed.

• cl1: cell-list built for the appropriate cut-off radius for pv1

• cl2: cell-list built for the appropriate cut-off radius for pv2

• stream: Execution stream

virtual bool isSelfObjectInteraction() const

This is useful to know if we need exchange / cell-lists for that interaction. Example: membrane interactions
are internal, all particles of a membrane are always on the same rank thus it does not need halo particles.

Return boolean describing if the interaction is an internal interaction.

virtual Stage getStage() const
returns the Stage corresponding to this interaction.

142

virtual std::vector<InteractionChannel> getInputChannels() const
Returns which channels are required as input.

Positions and velocities are always required and are not listed here; Only other channels must be specified
here.

virtual std::vector<InteractionChannel> getOutputChannels() const
Returns which channels are those output by the interactions.

virtual std::optional<real> getCutoffRadius() const

Return the cut-off radius of the interaction; std::nullopt if there is no cutoff.

Public Static Attributes

const ActivePredicate alwaysActive
a predicate that always returns true.

struct InteractionChannel
A simple structure used to describe which channels are active.

Public Members

std::string name
the name of the channel

ActivePredicate active
the activity of the channel

Object binding

class ObjectBindingInteraction : public mirheo::Interaction
Compute binding interaction used to attach two ParticleVector together.

The interaction has the form of that of a linear spring with constant kBound.

Public Functions

ObjectBindingInteraction(const MirState *state, std::string name, real kBound,
std::vector<int2> pairs)

Construct an ObjectBindingInteraction interaction.

Parameters

• state: The global state of the system.

• name: The name of the interaction.

• kBound: The force coefficient (spring constant).

• pairs: The list of pairs of particles that will interact with each other. A pair contains the global
ids of the first ParticleVector (first entry) and the second ParticleVector (second entry).

143

void local(ParticleVector *pv1, ParticleVector *pv2, CellList *cl1, CellList *cl2, cudaStream_t
stream)

Compute interactions between bulk particles.

The result of the interaction is added to the corresponding channel of the ParticleVector. The order of pv1
and pv2 may change the performance of the interactions.

Parameters

• pv1: first interacting ParticleVector

• pv2: second interacting ParticleVector. If it is the same as the pv1, self interactions will be
computed.

• cl1: cell-list built for the appropriate cut-off radius for pv1

• cl2: cell-list built for the appropriate cut-off radius for pv2

• stream: Execution stream

void halo(ParticleVector *pv1, ParticleVector *pv2, CellList *cl1, CellList *cl2, cudaStream_t stream)
Compute interactions between bulk particles and halo particles.

The result of the interaction is added to the corresponding channel of the ParticleVector. In general, the
following interactions will be computed: pv1->halo() <> pv2->local() and pv2->halo() <> pv1->local().

Parameters

• pv1: first interacting ParticleVector

• pv2: second interacting ParticleVector. If it is the same as the pv1, self interactions will be
computed.

• cl1: cell-list built for the appropriate cut-off radius for pv1

• cl2: cell-list built for the appropriate cut-off radius for pv2

• stream: Execution stream

Membrane Interactions

Base class

This is the visible class that is output of the factory function.

class BaseMembraneInteraction : public mirheo::Interaction
Base class that represents membrane interactions.

This kind of interactions does not require any cell-lists and is always a “self-interaction”, hence the halo inter-
action does not do anything. This must be used only with MembraneVector objects.

Subclassed by mirheo::MembraneInteraction< TriangleInteraction, DihedralInteraction, Filter >

Public Functions

BaseMembraneInteraction(const MirState *state, const std::string &name)
Construct a BaseMembraneInteraction object.

Parameters

• state: The global state of the system

144

• name: The name of the interaction

void setPrerequisites(ParticleVector *pv1, ParticleVector *pv2, CellList *cl1, CellList *cl2)
Set the required channels to the concerned ParticleVector that will participate in the interactions.

This method will fail if pv1 is not a MembraneVector or if pv1 is not the same as pv2.

Parameters

• pv1: The conserned data that will participate in the interactions.

• pv2: The conserned data that will participate in the interactions.

• cl1: Unused

• cl2: Unused

void halo(ParticleVector *pv1, ParticleVector *pv2, CellList *cl1, CellList *cl2, cudaStream_t stream)
Compute interactions between bulk particles and halo particles.

The result of the interaction is added to the corresponding channel of the ParticleVector. In general, the
following interactions will be computed: pv1->halo() <> pv2->local() and pv2->halo() <> pv1->local().

Parameters

• pv1: first interacting ParticleVector

• pv2: second interacting ParticleVector. If it is the same as the pv1, self interactions will be
computed.

• cl1: cell-list built for the appropriate cut-off radius for pv1

• cl2: cell-list built for the appropriate cut-off radius for pv2

• stream: Execution stream

bool isSelfObjectInteraction() const

This is useful to know if we need exchange / cell-lists for that interaction. Example: membrane interactions
are internal, all particles of a membrane are always on the same rank thus it does not need halo particles.

Return boolean describing if the interaction is an internal interaction.

Implementation

The factory instantiates one of this templated class. See Triangle Kernels, Dihedral Kernels and Filters for possible
template parameters.

template <class TriangleInteraction, class DihedralInteraction, class Filter>
class MembraneInteraction : public mirheo::BaseMembraneInteraction

Generic implementation of membrane forces.

Template Parameters

• TriangleInteraction: Describes what forces are applied to triangles

• DihedralInteraction: Describes what forces are applied to dihedrals

• Filter: This allows to apply the interactions only to a subset of membranes

145

Public Functions

MembraneInteraction(const MirState *state, std::string name, CommonMembraneParam-
eters parameters, typename TriangleInteraction::ParametersType tri-
angleParams, typename DihedralInteraction::ParametersType dihedral-
Params, real initLengthFraction, real growUntil, Filter filter, long seed =
42424242)

Construct a MembraneInteraction object.

More information can be found on growUntil in _scaleFromTime().

Parameters

• state: The global state of the system

• name: The name of the interaction

• parameters: The common parameters from all kernel forces

• triangleParams: Parameters that contain the parameters of the triangle forces kernel

• dihedralParams: Parameters that contain the parameters of the dihedral forces kernel

• initLengthFraction: The membrane will grow from this fraction of its size to its full size
in growUntil time

• growUntil: The membrane will grow from initLengthFraction fraction of its size to its
full size in this amount of time

• filter: Describes which membranes to apply the interactions

• seed: Random seed for rng

void local(ParticleVector *pv1, ParticleVector *pv2, CellList *cl1, CellList *cl2, cudaStream_t
stream)

Compute interactions between bulk particles.

The result of the interaction is added to the corresponding channel of the ParticleVector. The order of pv1
and pv2 may change the performance of the interactions.

Parameters

• pv1: first interacting ParticleVector

• pv2: second interacting ParticleVector. If it is the same as the pv1, self interactions will be
computed.

• cl1: cell-list built for the appropriate cut-off radius for pv1

• cl2: cell-list built for the appropriate cut-off radius for pv2

• stream: Execution stream

void setPrerequisites(ParticleVector *pv1, ParticleVector *pv2, CellList *cl1, CellList *cl2)
Set the required channels to the concerned ParticleVector that will participate in the interactions.

This method will fail if pv1 is not a MembraneVector or if pv1 is not the same as pv2.

Parameters

• pv1: The conserned data that will participate in the interactions.

• pv2: The conserned data that will participate in the interactions.

• cl1: Unused

• cl2: Unused

146

void checkpoint(MPI_Comm comm, const std::string &path, int checkPointId)
Save the state of the object on disk.

Parameters

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

• checkPointId: The id of the dump.

void restart(MPI_Comm comm, const std::string &path)
Load the state of the object from the disk.

Parameters

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

Triangle Kernels

Each thread is mapped to one vertex v1 and loops over all adjacent triangles labeled as follows:

v2 v1

v3

The output of the kernel is the forces of a given dihedral on v1. The forces on v2 and v3 from the same dihedral are
computed by the thread mapped on v2 and v3, respectively.

template <StressFreeState stressFreeState>
class TriangleLimForce

Compute shear energy on a given triangle with the Lim model.

Template Parameters

• stressFreeState: States if there is a stress free mesh associated with the interaction

Public Functions

TriangleLimForce(ParametersType p, const Mesh *mesh, mReal lscale)
Construct the functor.

147

Parameters

• p: The parameters of the model

• mesh: Triangle mesh information

• lscale: Scaling length factor, applied to all parameters

void applyLengthScalingFactor(mReal lscale)
Scale length-dependent parameters.

EquilibriumTriangleDesc getEquilibriumDesc(const MembraneMeshView &mesh, int i0, int i1)
const

Get the reference triangle information.

Return The reference triangle information.

Parameters

• mesh: Mesh view that contains the reference mesh. Only used when stressFreeState is Active.

• i0: Index (in the adjacent vertex ids space, see Mesh) of the first adjacent vertex

• i1: Index (in the adjacent vertex ids space, see Mesh) of the second adjacent vertex

mReal3 operator()(mReal3 v1, mReal3 v2, mReal3 v3, EquilibriumTriangleDesc eq) const
Compute the triangle force on v1.

See Developer docs for more details.

Return The triangle force acting on v1

Parameters

• v1: vertex 1

• v2: vertex 2

• v3: vertex 3

• eq: The reference triangle information

template <StressFreeState stressFreeState>
class TriangleWLCForce

Compute shear energy on a given triangle with the Lim model.

Template Parameters

• stressFreeState: States if there is a stress free mesh associated with the interaction

Public Functions

TriangleWLCForce(ParametersType p, const Mesh *mesh, mReal lscale)
Construct the functor.

Parameters

• p: The parameters of the model

• mesh: Triangle mesh information

• lscale: Scaling length factor, applied to all parameters

148

void applyLengthScalingFactor(mReal lscale)
Scale length-dependent parameters.

EquilibriumTriangleDesc getEquilibriumDesc(const MembraneMeshView &mesh, int i0, int i1)
const

Get the reference triangle information.

Return The reference triangle information.

Parameters

• mesh: Mesh view that contains the reference mesh. Only used when stressFreeState is Active.

• i0: Index (in the adjacent vertex ids space, see Mesh) of the first adjacent vertex

• i1: Index (in the adjacent vertex ids space, see Mesh) of the second adjacent vertex

mReal3 operator()(mReal3 v1, mReal3 v2, mReal3 v3, EquilibriumTriangleDesc eq) const
Compute the triangle force on v1.

See Developer docs for more details.

Return The triangle force acting on v1

Parameters

• v1: vertex 1

• v2: vertex 2

• v3: vertex 3

• eq: The reference triangle information

Dihedral Kernels

Each thread is mapped to one vertex v0 and loops over all adjacent dihedrals labeled as follows:

149

v2 v0

v1

v3

The output of the kernel is the forces of a given dihedral on v0 and v1. The forces on v2 and v3 from the same dihedral
are computed by the thread mapped on v3.

class DihedralJuelicher : public mirheo::VertexFetcherWithMeanCurvatures
Compute bending forces from the extended Juelicher model.

Public Types

using ParametersType = JuelicherBendingParameters
Type of parameters that describe the kernel.

Public Functions

DihedralJuelicher(ParametersType p, mReal lscale)
Initialize the functor.

Parameters

• p: The parameters of the functor

• lscale: Scaling length factor, applied to all parameters

void applyLengthScalingFactor(mReal lscale)
Scale length-dependent parameters.

void computeInternalCommonQuantities(const ViewType &view, int rbcId)
Precompute internal values that are common to all vertices in the cell.

Parameters

• view: The view that contains the required object channels

150

• rbcId: The index of the membrane in the view

mReal3 operator()(VertexType v0, VertexType v1, VertexType v2, VertexType v3, mReal3 &f1)
const

Compute the dihedral forces.

See Developer docs for more details.

Return The dihedral force acting on v0

Parameters

• v0: vertex 0

• v1: vertex 1

• v2: vertex 2

• v3: vertex 3

• f1: force acting on v1; this method will add (not set) the dihedral force to that quantity.

class DihedralKantor : public mirheo::VertexFetcher
Compute bending forces from the Kantor model.

Public Types

using ParametersType = KantorBendingParameters
Type of parameters that describe the kernel.

Public Functions

DihedralKantor(ParametersType p, mReal lscale)
Initialize the functor.

Parameters

• p: The parameters of the functor

• lscale: Scaling length factor, applied to all parameters

void applyLengthScalingFactor(mReal lscale)
Scale length-dependent parameters.

void computeInternalCommonQuantities(const ViewType &view, int rbcId)
Precompute internal values that are common to all vertices in the cell.

mReal3 operator()(VertexType v0, VertexType v1, VertexType v2, VertexType v3, mReal3 &f1)
const

Compute the dihedral forces.

See Developer docs for more details.

Return The dihedral force acting on v0

Parameters

• v0: vertex 0

• v1: vertex 1

• v2: vertex 2

151

• v3: vertex 3

• f1: force acting on v1; this method will add (not set) the dihedral force to that quantity.

Filters

The membrane interactions can be applied to only a subset of the given mirheo::MembraneVector. This can be
convenient to have different interaction parameters for different membranes with the same mesh topology. Further-
more, reducing the numper of mirheo::ParticleVector is beneficial for performance (less interaction kernel
launches so overhead for e.g. FSI).

class FilterKeepAll
Filter that keeps all the membranes.

Public Functions

void setPrerequisites(MembraneVector *mv) const
set required properties to mv

void setup(MembraneVector *mv)
Set internal state of the object.

bool inWhiteList(long membraneId) const
States if the given membrane must be kept or not.

Return true if the membrane should be kept, false otherwise.

Parameters

• membraneId: The index of the membrane to keep or not

class FilterKeepByTypeId
Keep membranes that have a given typeId.

The typeId of each membrane is stored in the object channel ChannelNames::membraneTypeId.

Public Functions

FilterKeepByTypeId(int whiteListTypeId)
Construct FilterKeepByTypeId that wil keep only the membranes with type id whiteListTypeId.

Parameters

• whiteListTypeId: The type id of the membranes to keep

void setPrerequisites(MembraneVector *mv) const
set required properties to mv

Parameters

• mv: The MembraneVector taht will be used

152

void setup(MembraneVector *mv)
Set internal state of the object.

This must be called after every change of mv DataManager

Parameters

• mv: The MembraneVector tahat will be used

bool inWhiteList(long membraneId) const
States if the given membrane must be kept or not.

Return true if the membrane should be kept, false otherwise.

Parameters

• membraneId: The index of the membrane to keep or not

Fetchers

Fetchers are used to load generic data that is needed for kernel computation. In most cases,
only vertex coordinates are sufficient (see mirheo::VertexFetcher). Additional data attached to
each vertex may be needed, such as mean curvature in e.g. mirheo::DihedralJuelicher (see
mirheo::VertexFetcherWithMeanCurvatures).

class VertexFetcher
Fetch a vertex for a given view.

Subclassed by mirheo::DihedralKantor, mirheo::VertexFetcherWithMeanCurvatures

Public Types

using VertexType = mReal3
info contained in the fetched data

using ViewType = OVview
compatible view

Public Functions

VertexType fetchVertex(const ViewType &view, int i) const
fetch a vertex coordinates from a view

Return The vertex coordinates

Parameters

• view: The view from which to fetch the vertex

• i: The index of the vertex in view

class VertexFetcherWithMeanCurvatures : public mirheo::VertexFetcher
Fetch vertex coordinates and mean curvature for a given view.

Subclassed by mirheo::DihedralJuelicher

153

Public Types

using VertexType = VertexWithMeanCurvature
info contained in the fetched data

using ViewType = OVviewWithJuelicherQuants
compatible view

Public Functions

VertexType fetchVertex(const ViewType &view, int i) const
fetch a vertex coordinates and its mean curvature from a view

Return The vertex coordinates

Parameters

• view: The view from which to fetch the vertex

• i: The index of the vertex in view

struct VertexWithMeanCurvature
holds vertex coordinates and mean curvature

Public Members

mReal3 r
vertex coordinates

mReal H
mean curvature

Object-Rod binding

This is experimental.

class ObjectRodBindingInteraction : public mirheo::Interaction
Compute elastic interaction used to attach a rod to a RigidObjectVector entity.

Public Functions

ObjectRodBindingInteraction(const MirState *state, std::string name, real torque, real3 re-
lAnchor, real kBound)

Construct an ObjectRodBindingInteraction interaction.

Parameters

• state: The global state of the system

• name: The name of the interaction

• torque: Torque applied from the rigid objet to the rod

• relAnchor: position of attachement with respect to the rigid object

• kBound: The elastic constant for the binding

154

void setPrerequisites(ParticleVector *pv1, ParticleVector *pv2, CellList *cl1, CellList *cl2)
Add needed properties to the given ParticleVectors for future interactions.

Must be called before any other method of this class.

Parameters

• pv1: One ParticleVector of the interaction

• pv2: The other ParticleVector of that will interact

• cl1: CellList of pv1

• cl2: CellList of pv2

void local(ParticleVector *pv1, ParticleVector *pv2, CellList *cl1, CellList *cl2, cudaStream_t
stream)

Compute interactions between bulk particles.

The result of the interaction is added to the corresponding channel of the ParticleVector. The order of pv1
and pv2 may change the performance of the interactions.

Parameters

• pv1: first interacting ParticleVector

• pv2: second interacting ParticleVector. If it is the same as the pv1, self interactions will be
computed.

• cl1: cell-list built for the appropriate cut-off radius for pv1

• cl2: cell-list built for the appropriate cut-off radius for pv2

• stream: Execution stream

void halo(ParticleVector *pv1, ParticleVector *pv2, CellList *cl1, CellList *cl2, cudaStream_t stream)
Compute interactions between bulk particles and halo particles.

The result of the interaction is added to the corresponding channel of the ParticleVector. In general, the
following interactions will be computed: pv1->halo() <> pv2->local() and pv2->halo() <> pv1->local().

Parameters

• pv1: first interacting ParticleVector

• pv2: second interacting ParticleVector. If it is the same as the pv1, self interactions will be
computed.

• cl1: cell-list built for the appropriate cut-off radius for pv1

• cl2: cell-list built for the appropriate cut-off radius for pv2

• stream: Execution stream

Pairwise Interactions

Base class

This is the visible class that is output of the factory function.

class BasePairwiseInteraction : public mirheo::Interaction
Base class for short-range symmetric pairwise interactions.

155

Subclassed by mirheo::PairwiseInteraction< PairwiseKernel >, mirheo::PairwiseInteractionWithStress<
PairwiseKernel >, mirheo::PairwiseInteraction< mirheo::PairwiseKernel >, mirheo::PairwiseInteraction<
mirheo::PairwiseStressWrapper< mirheo::PairwiseKernel > >

Public Functions

BasePairwiseInteraction(const MirState *state, const std::string &name, real rc)
Construct a base pairwise interaction from parameters.

Parameters

• state: The global state of the system.

• name: The name of the interaction.

• rc: The cutoff radius of the interaction. Must be positive and smaller than the sub-domain size.

std::optional<real> getCutoffRadius() const

Return the cut-off radius of the pairwise interaction.

Implementation

The factory instantiates one of this templated class. See below for the requirements on the kernels.

template <class PairwiseKernel>
class PairwiseInteraction : public mirheo::BasePairwiseInteraction

Short-range symmetric pairwise interactions.

See the pairwise interaction entry of the developer documentation for the interface requirements of the kernel.

Template Parameters

• PairwiseKernel: The functor that describes the interaction between two particles (interaction
kernel).

Public Functions

PairwiseInteraction(const MirState *state, const std::string &name, real rc, KernelParams
pairParams, long seed = 42424242)

Construct a PairwiseInteraction object.

Parameters

• state: The global state of the system

• name: The name of the interaction

• rc: The cut-off radius of the interaction

• pairParams: The parameters used to construct the interaction kernel

• seed: used to initialize random number generator (needed to construct some interaction kernels).

void setPrerequisites(ParticleVector *pv1, ParticleVector *pv2, CellList *cl1, CellList *cl2)
Add needed properties to the given ParticleVectors for future interactions.

Must be called before any other method of this class.

156

Parameters

• pv1: One ParticleVector of the interaction

• pv2: The other ParticleVector of that will interact

• cl1: CellList of pv1

• cl2: CellList of pv2

void local(ParticleVector *pv1, ParticleVector *pv2, CellList *cl1, CellList *cl2, cudaStream_t
stream)

Compute interactions between bulk particles.

The result of the interaction is added to the corresponding channel of the ParticleVector. The order of pv1
and pv2 may change the performance of the interactions.

Parameters

• pv1: first interacting ParticleVector

• pv2: second interacting ParticleVector. If it is the same as the pv1, self interactions will be
computed.

• cl1: cell-list built for the appropriate cut-off radius for pv1

• cl2: cell-list built for the appropriate cut-off radius for pv2

• stream: Execution stream

void halo(ParticleVector *pv1, ParticleVector *pv2, CellList *cl1, CellList *cl2, cudaStream_t stream)
Compute interactions between bulk particles and halo particles.

The result of the interaction is added to the corresponding channel of the ParticleVector. In general, the
following interactions will be computed: pv1->halo() <> pv2->local() and pv2->halo() <> pv1->local().

Parameters

• pv1: first interacting ParticleVector

• pv2: second interacting ParticleVector. If it is the same as the pv1, self interactions will be
computed.

• cl1: cell-list built for the appropriate cut-off radius for pv1

• cl2: cell-list built for the appropriate cut-off radius for pv2

• stream: Execution stream

Stage getStage() const
returns the Stage corresponding to this interaction.

std::vector<InteractionChannel> getInputChannels() const
Returns which channels are required as input.

Positions and velocities are always required and are not listed here; Only other channels must be specified
here.

std::vector<InteractionChannel> getOutputChannels() const
Returns which channels are those output by the interactions.

void checkpoint(MPI_Comm comm, const std::string &path, int checkPointId)
Save the state of the object on disk.

Parameters

157

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

• checkPointId: The id of the dump.

void restart(MPI_Comm comm, const std::string &path)
Load the state of the object from the disk.

Parameters

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

Public Static Functions

static std::string getTypeName()

Return A string that describes the type of this object

A specific class can be used to compute addtionally the stresses of a given interaction.

template <class PairwiseKernel>
class PairwiseInteractionWithStress : public mirheo::BasePairwiseInteraction

Short-range symmetric pairwise interactions with stress output.

This object manages two interaction: one with stress, which is used every stressPeriod time, and one with no
stress wrapper, that is used the rest of the time. This is motivated by the fact that stresses are not needed for the
simulation but rather for post processing; thus the stresses may not need to be computed at every time step.

Template Parameters

• PairwiseKernel: The functor that describes the interaction between two particles (interaction
kernel).

Public Functions

PairwiseInteractionWithStress(const MirState *state, const std::string &name, real rc,
real stressPeriod, KernelParams pairParams, long seed =
42424242)

Construct a PairwiseInteractionWithStress object.

Parameters

• state: The global state of the system

• name: The name of the interaction

• rc: The cut-off radius of the interaction

• stressPeriod: The simulation time between two stress computation

• pairParams: The parameters used to construct the interaction kernel

• seed: used to initialize random number generator (needed to construct some interaction kernels).

void setPrerequisites(ParticleVector *pv1, ParticleVector *pv2, CellList *cl1, CellList *cl2)
Add needed properties to the given ParticleVectors for future interactions.

Must be called before any other method of this class.

158

Parameters

• pv1: One ParticleVector of the interaction

• pv2: The other ParticleVector of that will interact

• cl1: CellList of pv1

• cl2: CellList of pv2

void local(ParticleVector *pv1, ParticleVector *pv2, CellList *cl1, CellList *cl2, cudaStream_t
stream)

Compute interactions between bulk particles.

The result of the interaction is added to the corresponding channel of the ParticleVector. The order of pv1
and pv2 may change the performance of the interactions.

Parameters

• pv1: first interacting ParticleVector

• pv2: second interacting ParticleVector. If it is the same as the pv1, self interactions will be
computed.

• cl1: cell-list built for the appropriate cut-off radius for pv1

• cl2: cell-list built for the appropriate cut-off radius for pv2

• stream: Execution stream

void halo(ParticleVector *pv1, ParticleVector *pv2, CellList *cl1, CellList *cl2, cudaStream_t stream)
Compute interactions between bulk particles and halo particles.

The result of the interaction is added to the corresponding channel of the ParticleVector. In general, the
following interactions will be computed: pv1->halo() <> pv2->local() and pv2->halo() <> pv1->local().

Parameters

• pv1: first interacting ParticleVector

• pv2: second interacting ParticleVector. If it is the same as the pv1, self interactions will be
computed.

• cl1: cell-list built for the appropriate cut-off radius for pv1

• cl2: cell-list built for the appropriate cut-off radius for pv2

• stream: Execution stream

std::vector<InteractionChannel> getInputChannels() const
Returns which channels are required as input.

Positions and velocities are always required and are not listed here; Only other channels must be specified
here.

std::vector<InteractionChannel> getOutputChannels() const
Returns which channels are those output by the interactions.

void checkpoint(MPI_Comm comm, const std::string &path, int checkPointId)
Save the state of the object on disk.

Parameters

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

159

• checkPointId: The id of the dump.

void restart(MPI_Comm comm, const std::string &path)
Load the state of the object from the disk.

Parameters

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

Public Static Functions

static std::string getTypeName()

Return A string that describes the type of this object

Kernels

Interface

The mirheo::PairwiseInteraction takes a functor that describes a pairwise interaction. This functor may
be splitted into two parts:

• a handler, that must be usable on the device.

• a manager, that may store extra information on the host. For simple interactions, this can be the same as the
handler class.

The interface of the functor must follow the following requirements:

1. Define a view type to be passed (e.g. mirheo::PVview) as well as a particle type to be fetched and the
parameter struct used for initialization:

using ViewType = <particle vector view type>
using ParticleType = <particle type>
using HandlerType = <type passed to GPU>
using ParamsType = <struct that contains the parameters of this functor>

2. A generic constructor from the ParamsType parameters:

PairwiseKernelType(real rc, const ParamsType& p, real dt, long seed=42424242);

3. Setup function (on Host, for manager only)

void setup(LocalParticleVector* lpv1, LocalParticleVector* lpv2, CellList* cl1,
→˓CellList* cl2, const MirState *state);

4. Handler function (on Host, for manager only)

const HandlerType& handler() const;

5. Interaction function (output must match with accumulator, see below) (on GPU)

__D__ <OutputType> operator()(const ParticleType dst, int dstId, const
→˓ParticleType src, int srcId) const;

160

6. Accumulator initializer (on GPU)

__D__ <Accumulator> getZeroedAccumulator() const;

7. Fetch functions (see in fetchers.h or see the docs):

__D__ ParticleType read(const ViewType& view, int id) const;
__D__ ParticleType readNoCache(const ViewType& view, int id) const;

__D__ void readCoordinates(ParticleType& p, const ViewType& view, int id) const;
__D__ void readExtraData(ParticleType& p, const ViewType& view, int id) const;

8. Interacting checker to discard pairs not within cutoff:

__D__ bool withinCutoff(const ParticleType& src, const ParticleType& dst) const;

9. Position getter from generic particle type:

__D__ real3 getPosition(const ParticleType& p) const;

Note: To implement a new kernel, the following must be done: - satisfy the above interface - add a correspond-
ing parameter in parameters.h - add it to the variant in parameters.h - if necessary, add type traits specialization in
type_traits.h

This is the interface for the host calls:

class PairwiseKernel
Interface of host methods required for a pairwise kernel.

Subclassed by mirheo::PairwiseDensity< DensityKernel >, mirheo::PairwiseDPD, mirheo::PairwiseLJ,
mirheo::PairwiseMDPD, mirheo::PairwiseMorse< Awareness >, mirheo::PairwiseNorandomDPD,
mirheo::PairwiseRepulsiveLJ< Awareness >, mirheo::PairwiseSDPD< PressureEOS, DensityKernel >,
mirheo::PairwiseStressWrapper< mirheo::PairwiseKernel >

Public Functions

virtual void setup(LocalParticleVector *lpv1, LocalParticleVector *lpv2, CellList *cl1, CellList
*cl2, const MirState *state)

setup the internal state of the functor

virtual void writeState(std::ofstream &fout)
write internal state to a stream

virtual bool readState(std::ifstream &fin)
restore internal state from a stream

The rest is directly implemented in the kernels, as no virtual functions are allowed on the device.

Implemented kernels

template <typename DensityKernel>
class PairwiseDensity : public mirheo::PairwiseKernel, public mirheo::ParticleFetcher

Compute number density from pairwise kernel.

161

Template Parameters

• DensityKernel: The kernel used to evaluate the number density

Public Functions

PairwiseDensity(real rc, DensityKernel densityKernel)
construct from density kernel

PairwiseDensity(real rc, const ParamsType &p, long seed = 42424242)
generic constructor

real operator()(const ParticleType dst, int dstId, const ParticleType src, int srcId) const
evaluate the number density contribution of this pair

DensityAccumulator getZeroedAccumulator() const
initialize the accumulator

const HandlerType &handler() const
get the handler that can be used on device

class PairwiseDPDHandler : public mirheo::ParticleFetcher
a GPU compatible functor that computes DPD interactions

Subclassed by mirheo::PairwiseDPD

Public Types

using ViewType = PVview
compatible view type

using ParticleType = Particle
compatible particle type

Public Functions

PairwiseDPDHandler(real rc, real a, real gamma, real power)
constructor

real3 operator()(const ParticleType dst, int dstId, const ParticleType src, int srcId) const
evaluate the force

ForceAccumulator getZeroedAccumulator() const
initialize accumulator

class PairwiseDPD : public mirheo::PairwiseKernel, public mirheo::PairwiseDPDHandler
Helper class that constructs PairwiseDPDHandler.

Public Types

using HandlerType = PairwiseDPDHandler
handler type corresponding to this object

using ParamsType = DPDParams
parameters that are used to create this object

162

Public Functions

PairwiseDPD(real rc, real a, real gamma, real kBT, real power, long seed = 42424242)
Constructor.

PairwiseDPD(real rc, const ParamsType &p, long seed = 42424242)
Generic constructor.

const HandlerType &handler() const
get the handler that can be used on device

void setup(LocalParticleVector *lpv1, LocalParticleVector *lpv2, CellList *cl1, CellList *cl2, const
MirState *state)

setup the internal state of the functor

void writeState(std::ofstream &fout)
write internal state to a stream

bool readState(std::ifstream &fin)
restore internal state from a stream

Public Static Functions

static std::string getTypeName()

Return type name string

class PairwiseLJ : public mirheo::PairwiseKernel, public mirheo::ParticleFetcher
Compute Lennard-Jones forces on the device.

Public Types

using ViewType = PVview
Compatible view type.

using ParticleType = Particle
Compatible particle type.

using HandlerType = PairwiseLJ
Corresponding handler.

using ParamsType = LJParams
Corresponding parameters type.

Public Functions

PairwiseLJ(real rc, real epsilon, real sigma)
Constructor.

PairwiseLJ(real rc, const ParamsType &p, long seed = 42424242)
Generic constructor.

real3 operator()(ParticleType dst, int, ParticleType src, int) const
Evaluate the force.

163

ForceAccumulator getZeroedAccumulator() const
initialize accumulator

const HandlerType &handler() const
get the handler that can be used on device

Public Static Functions

static std::string getTypeName()

Return type name string

template <class Awareness>
class PairwiseMorse : public mirheo::PairwiseKernel, public mirheo::ParticleFetcher

Compute Morse forces on the device.

Template Parameters

• Awareness: A functor that describes which particles pairs interact.

Public Functions

PairwiseMorse(real rc, real De, real r0, real beta, Awareness awareness)
Constructor.

PairwiseMorse(real rc, const ParamsType &p, long seed)
Generic constructor.

real3 operator()(ParticleType dst, int dstId, ParticleType src, int srcId) const
Evaluate the force.

ForceAccumulator getZeroedAccumulator() const
initialize accumulator

const HandlerType &handler() const
get the handler that can be used on device

void setup(LocalParticleVector *lpv1, LocalParticleVector *lpv2, CellList *cl1, CellList *cl2, const
MirState *state)

setup the internal state of the functor

Public Static Functions

static std::string getTypeName()

Return type name string

class PairwiseMDPDHandler : public mirheo::ParticleFetcherWithDensity
a GPU compatible functor that computes MDPD interactions

Subclassed by mirheo::PairwiseMDPD

164

Public Types

using ViewType = PVviewWithDensities
compatible view type

using ParticleType = ParticleWithDensity
compatible particle type

Public Functions

PairwiseMDPDHandler(real rc, real rd, real a, real b, real gamma, real power)
constructor

real3 operator()(const ParticleType dst, int dstId, const ParticleType src, int srcId) const
evaluate the force

ForceAccumulator getZeroedAccumulator() const
initialize accumulator

class PairwiseMDPD : public mirheo::PairwiseKernel, public mirheo::PairwiseMDPDHandler
Helper class that constructs PairwiseMDPDHandler.

Public Types

using HandlerType = PairwiseMDPDHandler
handler type corresponding to this object

using ParamsType = MDPDParams
parameters that are used to create this object

Public Functions

PairwiseMDPD(real rc, real rd, real a, real b, real gamma, real kBT, real power, long seed = 42424242)
Constructor.

PairwiseMDPD(real rc, const ParamsType &p, long seed = 42424242)
Generic constructor.

const HandlerType &handler() const
get the handler that can be used on device

void setup(LocalParticleVector *lpv1, LocalParticleVector *lpv2, CellList *cl1, CellList *cl2, const
MirState *state)

setup the internal state of the functor

void writeState(std::ofstream &fout)
write internal state to a stream

bool readState(std::ifstream &fin)
restore internal state from a stream

165

Public Static Functions

static std::string getTypeName()

Return type name string

class PairwiseNorandomDPD : public mirheo::PairwiseKernel, public mirheo::ParticleFetcher
a GPU compatible functor that computes DPD interactions without fluctuations.

Used in unit tests

Public Types

using ViewType = PVview
compatible view type

using ParticleType = Particle
compatible particle type

using HandlerType = PairwiseNorandomDPD
handler type corresponding to this object

using ParamsType = NoRandomDPDParams
parameters that are used to create this object

Public Functions

PairwiseNorandomDPD(real rc, real a, real gamma, real kBT, real power)
constructor

PairwiseNorandomDPD(real rc, const ParamsType &p, long seed = 42424242)
Generic constructor.

real3 operator()(const ParticleType dst, int dstId, const ParticleType src, int srcId) const
evaluate the force

ForceAccumulator getZeroedAccumulator() const
initialize accumulator

const HandlerType &handler() const
get the handler that can be used on device

void setup(LocalParticleVector *lpv1, LocalParticleVector *lpv2, CellList *cl1, CellList *cl2, const
MirState *state)

setup the internal state of the functor

Public Static Functions

static std::string getTypeName()

Return type name string

template <class Awareness>
class PairwiseRepulsiveLJ : public mirheo::PairwiseKernel

Kernel for repulsive LJ forces.

Subclassed by mirheo::PairwiseGrowingRepulsiveLJ< Awareness >

166

Public Functions

PairwiseRepulsiveLJ(real rc, real epsilon, real sigma, real maxForce, Awareness awareness)
Constructor.

PairwiseRepulsiveLJ(real rc, const ParamsType &p, long seed = 42424242)
Generic constructor.

const HandlerType &handler() const
get the handler that can be used on device

void setup(LocalParticleVector *lpv1, LocalParticleVector *lpv2, CellList *cl1, CellList *cl2, const
MirState *state)

setup the internal state of the functor

template <typename PressureEOS, typename DensityKernel>
class PairwiseSDPDHandler : public mirheo::ParticleFetcherWithDensityAndMass

Compute smooth dissipative particle dynamics forces on the device.

Template Parameters

• PressureEos: The equation of state

• DensityJKernel: The kernel used to compute the density

Subclassed by mirheo::PairwiseSDPD< PressureEOS, DensityKernel >

Public Functions

PairwiseSDPDHandler(real rc, PressureEOS pressure, DensityKernel densityKernel, real viscosity)
Constructor.

real3 operator()(const ParticleType dst, int dstId, const ParticleType src, int srcId) const
evaluate the force

ForceAccumulator getZeroedAccumulator() const
initialize the accumulator

template <typename PressureEOS, typename DensityKernel>
class PairwiseSDPD : public mirheo::PairwiseKernel, public mirheo::PairwiseSDPDHandler<PressureEOS, DensityKernel>

Helper class to create PairwiseSDPDHandler from host.

Template Parameters

• PressureEos: The equation of state

• DensityJKernel: The kernel used to compute the number density

Public Functions

PairwiseSDPD(real rc, PressureEOS pressure, DensityKernel densityKernel, real viscosity, real kBT,
long seed = 42424242)

Constructor.

PairwiseSDPD(real rc, const ParamsType &p, long seed = 42424242)
Generic constructor.

167

const HandlerType &handler() const
get the handler that can be used on device

void setup(LocalParticleVector *lpv1, LocalParticleVector *lpv2, CellList *cl1, CellList *cl2, const
MirState *state)

setup the internal state of the functor

void writeState(std::ofstream &fout)
write internal state to a stream

bool readState(std::ifstream &fin)
restore internal state from a stream

The above kernels that output a force can be wrapped by the stress wrapper:

template <typename BasicPairwiseForceHandler>
class PairwiseStressWrapperHandler : public BasicPairwiseForceHandler

Compute force and stress from a pairwise force kernel.

Template Parameters

• BasicPairwiseForceHandler: The underlying pairwise interaction handler (must output a
force)

Public Functions

PairwiseStressWrapperHandler(BasicPairwiseForceHandler basicForceHandler)
Constructor.

__device__ ForceStress operator()(const ParticleType dst, int dstId, const ParticleType src, int
srcId) const

Evaluate the force and the stress.

ForceStressAccumulator<BasicViewType> getZeroedAccumulator() const
Initialize the accumulator.

template <typename BasicPairwiseForce>
class PairwiseStressWrapper : public BasicPairwiseForce

Create PairwiseStressWrapperHandler from host.

Template Parameters

• BasicPairwiseForceHandler: The underlying pairwise interaction (must output a force)

Public Functions

PairwiseStressWrapper(BasicPairwiseForce basicForce)
Constructor.

PairwiseStressWrapper(real rc, const ParamsType &p, long seed = 42424242)
Generic constructor.

void setup(LocalParticleVector *lpv1, LocalParticleVector *lpv2, CellList *cl1, CellList *cl2, const
MirState *state)

setup internal state

const HandlerType &handler() const
get the handler that can be used on device

168

Fetchers

Fetchers are used to load the correct data needed by the pairwise kernels (e.g. the
mirheo::PairwiseRepulsiveLJ kernel needs only the positions while the mirheo::PairwiseSDPD
kernel needs also velocities and number densities).

class ParticleFetcher
fetch position, velocity and global id

Subclassed by mirheo::PairwiseDensity< DensityKernel >, mirheo::PairwiseDPDHandler,
mirheo::PairwiseLJ, mirheo::PairwiseMorse< Awareness >, mirheo::PairwiseNorandomDPD,
mirheo::PairwiseRepulsiveLJHandler< Awareness >, mirheo::ParticleFetcherWithDensity

Public Types

using ViewType = PVview
compatible view type

using ParticleType = Particle
compatible particle type

Public Functions

ParticleFetcher(real rc)

Parameters

• rc: cut-off radius

ParticleType read(const ViewType &view, int id) const
fetch the particle information

Return Particle information

Parameters

• view: The view pointing to the data

• id: The particle index

ParticleType readNoCache(const ViewType &view, int id) const
read particle information directly from the global memory (without going through the L1 or L2 cache)
This may be beneficial if one want to maximize the cahe usage on a concurrent stream

void readCoordinates(ParticleType &p, const ViewType &view, int id) const
read the coordinates only (used for the first pass on the neighbors, discard cut-off radius)

void readExtraData(ParticleType &p, const ViewType &view, int id) const
read the additional data contained in the particle (other than coordinates)

bool withinCutoff(const ParticleType &src, const ParticleType &dst) const

Return true if the particles src and dst are within the cut-off radius distance; false otherwise.

real3 getPosition(const ParticleType &p) const
Generic converter from the ParticleType type to the common real3 coordinates.

int64_t getId(const ParticleType &p) const

169

Return Global id of the particle

class ParticleFetcherWithDensity : public mirheo::ParticleFetcher
fetch positions, velocities and number densities

Subclassed by mirheo::PairwiseMDPDHandler, mirheo::ParticleFetcherWithDensityAndMass

Public Types

using ViewType = PVviewWithDensities
compatible view type

using ParticleType = ParticleWithDensity
compatible particle type

Public Functions

ParticleFetcherWithDensity(real rc)

Parameters

• rc: cut-off radius

ParticleType read(const ViewType &view, int id) const
read full particle information

ParticleType readNoCache(const ViewType &view, int id) const
read full particle information through global memory

void readCoordinates(ParticleType &p, const ViewType &view, int id) const
read particle coordinates only

void readExtraData(ParticleType &p, const ViewType &view, int id) const
read velocity and number density of the particle

bool withinCutoff(const ParticleType &src, const ParticleType &dst) const

Return true if src and dst are within a cut-off radius distance; false otherwise

real3 getPosition(const ParticleType &p) const
fetch position from the generic particle structure

int64_t getId(const ParticleType &p) const

Return Global id of the particle

struct ParticleWithDensity
contains position, global index, velocity and number density of a particle

Public Members

Particle p
positions, global id, velocity

real d
number density

170

class ParticleFetcherWithDensityAndMass : public mirheo::ParticleFetcherWithDensity
fetch that reads positions, velocities, number densities and mass

Subclassed by mirheo::PairwiseSDPDHandler< PressureEOS, DensityKernel >

Public Types

using ViewType = PVviewWithDensities
Compatible view type.

using ParticleType = ParticleWithDensityAndMass
Compatible particle type.

Public Functions

ParticleFetcherWithDensityAndMass(real rc)

Parameters

• rc: The cut-off radius

ParticleType read(const ViewType &view, int id) const
read full particle information

ParticleType readNoCache(const ViewType &view, int id) const
read full particle information through global memory

void readCoordinates(ParticleType &p, const ViewType &view, int id) const
read particle coordinates only

void readExtraData(ParticleType &p, const ViewType &view, int id) const
read velocity, number density and mass of the particle

bool withinCutoff(const ParticleType &src, const ParticleType &dst) const

Return true if src and dst are within a cut-off radius distance; false otherwise

real3 getPosition(const ParticleType &p) const
fetch position from the generic particle structure

int64_t getId(const ParticleType &p) const

Return Global id of the particle

struct ParticleWithDensityAndMass
contains position, velocity, global id, number density and mass of a particle

Public Members

Particle p
position, global id, velocity

real d
number density

real m
mass

171

Accumulators

Every interaction kernel must initialize an accumulator that is used to add its output quantity. Depending on the kernel,
that quantity may be of different type, and may behave in a different way (e.g. forces and stresses are different).

It must satisfy the following interface requirements (in the following, we denote the type of the local variable as
LType and the view type as ViewType):

1. A default constructor which initializes the internal local variable

2. Atomic accumulator from local value to destination view:

__D__ void atomicAddToDst(LType, ViewType&, int id) const;

3. Atomic accumulator from local value to source view:

__D__ inline void atomicAddToSrc(LType, ViewType&, int id) const;

4. Accessor of accumulated value:

__D__ inline LType get() const;

5. Function to add a value to the accumulator (from output of pairwise kernel):

__D__ inline void add(LType);

The following accumulators are currently implemented:

class DensityAccumulator
Accumulate densities on device.

Public Functions

DensityAccumulator()
Initialize the DensityAccumulator.

void atomicAddToDst(real d, PVviewWithDensities &view, int id) const
Atomically add density d to the destination view at id id.

Parameters

• d: The value to add

• view: The destination container

• id: destination index in view

void atomicAddToSrc(real d, PVviewWithDensities &view, int id) const
Atomically add density d to the source view at id id.

Parameters

• d: The value to add

• view: The destination container

• id: destination index in view

real get() const

172

Return the internal accumulated density

void add(real d)
add d to the internal density

class ForceAccumulator
Accumulate forces on device.

Public Functions

ForceAccumulator()
Initialize the ForceAccumulator.

void atomicAddToDst(real3 f, PVview &view, int id) const
Atomically add the force f to the destination view at id id.

Parameters

• f: The force, directed from src to dst

• view: The destination container

• id: destination index in view

void atomicAddToSrc(real3 f, PVview &view, int id) const
Atomically add the force f to the source view at id id.

Parameters

• f: The force, directed from src to dst

• view: The destination container

• id: destination index in view

real3 get() const

Return the internal accumulated force

void add(real3 f)
add f to the internal force

struct ForceStress
Holds force and stress together.

Public Members

real3 force
force value

Stress stress
stress value

template <typename BasicView>
class ForceStressAccumulator

Accumulate ForceStress structure on device.

Template Parameters

173

• BasicView: The view type without stress, to enforce the use of the stress view wrapper

Public Functions

ForceStressAccumulator()
Initialize the ForceStressAccumulator.

void atomicAddToDst(const ForceStress &fs, PVviewWithStresses<BasicView> &view, int id)
const

Atomically add the force and stress fs to the destination view at id id.

Parameters

• fs: The force, directed from src to dst, and the corresponding stress

• view: The destination container

• id: destination index in view

void atomicAddToSrc(const ForceStress &fs, PVviewWithStresses<BasicView> &view, int id)
const

Atomically add the force and stress fs to the source view at id id.

Parameters

• fs: The force, directed from src to dst, and the corresponding stress

• view: The destination container

• id: destination index in view

ForceStress get() const

Return the internal accumulated force and stress

void add(const ForceStress &fs)
add fs to the internal force

Rod Interactions

Base class

This is the visible class that is output of the factory function.

class BaseRodInteraction : public mirheo::Interaction
Base class to manage rod interactions.

Rod interactions must be used with a RodVector. They are internal forces, meaning that halo() does not compute
anything.

Subclassed by mirheo::RodInteraction< Nstates, StateParameters >

174

Public Functions

BaseRodInteraction(const MirState *state, const std::string &name)
Construct a BaseRodInteraction.

Parameters

• state: The global state of the system

• name: Name of the interaction

void halo(ParticleVector *pv1, ParticleVector *pv2, CellList *cl1, CellList *cl2, cudaStream_t stream)
Compute interactions between bulk particles and halo particles.

The result of the interaction is added to the corresponding channel of the ParticleVector. In general, the
following interactions will be computed: pv1->halo() <> pv2->local() and pv2->halo() <> pv1->local().

Parameters

• pv1: first interacting ParticleVector

• pv2: second interacting ParticleVector. If it is the same as the pv1, self interactions will be
computed.

• cl1: cell-list built for the appropriate cut-off radius for pv1

• cl2: cell-list built for the appropriate cut-off radius for pv2

• stream: Execution stream

bool isSelfObjectInteraction() const

This is useful to know if we need exchange / cell-lists for that interaction. Example: membrane interactions
are internal, all particles of a membrane are always on the same rank thus it does not need halo particles.

Return boolean describing if the interaction is an internal interaction.

Implementation

The factory instantiates one of this templated class.

template <int Nstates, class StateParameters>
class RodInteraction : public mirheo::BaseRodInteraction

Generic implementation of rod forces.

Template Parameters

• Nstates: Number of polymorphic states

• StateParameters: parameters associated to the polymorphic state model

Public Functions

RodInteraction(const MirState *state, const std::string &name, RodParameters parameters,
StateParameters stateParameters, bool saveEnergies)

Construct a RodInteraction object.

Parameters

175

• state: The global state of the system

• name: The name of the interaction

• parameters: The common parameters from all kernel forces

• stateParameters: Parameters related to polymorphic states transition

• saveEnergies: true if the user wants to also compute the energies. In this case, energies
will be saved in the channel_names::energies bisegment channel.

void setPrerequisites(ParticleVector *pv1, ParticleVector *pv2, CellList *cl1, CellList *cl2)
Add needed properties to the given ParticleVectors for future interactions.

Must be called before any other method of this class.

Parameters

• pv1: One ParticleVector of the interaction

• pv2: The other ParticleVector of that will interact

• cl1: CellList of pv1

• cl2: CellList of pv2

void local(ParticleVector *pv1, ParticleVector *pv2, CellList *cl1, CellList *cl2, cudaStream_t
stream)

Compute interactions between bulk particles.

The result of the interaction is added to the corresponding channel of the ParticleVector. The order of pv1
and pv2 may change the performance of the interactions.

Parameters

• pv1: first interacting ParticleVector

• pv2: second interacting ParticleVector. If it is the same as the pv1, self interactions will be
computed.

• cl1: cell-list built for the appropriate cut-off radius for pv1

• cl2: cell-list built for the appropriate cut-off radius for pv2

• stream: Execution stream

Kernels

The following support structure is used to compute the elastic energy:

template <int Nstates>
struct BiSegment

Helper class to compute elastic forces and energy on a bisegment.

Template Parameters

• Nstates: Number of polymorphic states

176

Public Functions

__device__ BiSegment(const RVview &view, int start)
Fetch bisegment data and prepare helper quantities.

__device__ rReal3 applyGrad0Bicur(const rReal3 &v) const
compute gradient of the bicurvature w.r.t. r0 times v

__device__ rReal3 applyGrad2Bicur(const rReal3 &v) const
compute gradient of the bicurvature w.r.t. r0 times v

__device__ void computeBendingForces(int state, constGPU_RodBiSegmentParameters<Nstates>
¶ms, rReal3 &fr0, rReal3 &fr2, rReal3 &fpm0,
rReal3 &fpm1) const

compute the bending forces acting on the bisegment particles

This metho will add bending foces to the given variables. The other forces (on e.g. r1) can be computed
by the symmetric nature of the model.

Parameters

• state: Polymorphic state

• params: Elastic forces parameters

• fr0: Force acting on r0

• fr2: Force acting on r2

• fpm0: Force acting on pm0

• fpm1: Force acting on pm1

__device__ void computeTwistForces(int state, const GPU_RodBiSegmentParameters<Nstates>
¶ms, rReal3 &fr0, rReal3 &fr2, rReal3 &fpm0, rReal3
&fpm1) const

compute the torsion forces acting on the bisegment particles

This metho will add twist foces to the given variables. The other forces (on e.g. r1) can be computed by
the symmetric nature of the model.

Parameters

• state: Polymorphic state

• params: Elastic forces parameters

• fr0: Force acting on r0

• fr2: Force acting on r2

• fpm0: Force acting on pm0

• fpm1: Force acting on pm1

__device__ void computeCurvatures(rReal2 &kappa0, rReal2 &kappa1) const
Compute the curvatures along the material frames on each segment.

Parameters

• kappa0: Curvature on the first segment

• kappa1: Curvature on the second segment

177

__device__ void computeTorsion(rReal &tau) const
Compute the torsion along the bisegment.

Parameters

• tau: Torsion

__device__ void computeCurvaturesGradients(rReal3 &gradr0x, rReal3 &gradr0y, rReal3
&gradr2x, rReal3 &gradr2y, rReal3
&gradpm0x, rReal3 &gradpm0y, rReal3
&gradpm1x, rReal3 &gradpm1y) const

compute gradients of curvature term w.r.t. particle positions (see drivers)

__device__ void computeTorsionGradients(rReal3 &gradr0, rReal3 &gradr2, rReal3
&gradpm0, rReal3 &gradpm1) const

compute gradients of torsion term w.r.t. particle positions (see drivers)

__device__ rReal computeEnergy(int state, const GPU_RodBiSegmentParameters<Nstates>
¶ms) const

Compute the energy of the bisegment.

Public Members

rReal3 e0
first segment

rReal3 e1
second segment

rReal3 t0
first segment direction

rReal3 t1
second segment direction

rReal3 dp0
first material frame direction

rReal3 dp1
second material frame direction

rReal3 bicur
bicurvature

rReal bicurFactor
helper scalar to compute bicurvature

rReal e0inv
1 / length of first segment

rReal e1inv
1 / length of second segment

rReal linv
1 / l

rReal l
average of the lengths of the two segments

178

Utils

Parameter wrap

This class is used to facilitate parameters read.

class ParametersWrap
A tool to transform a map from string keys to variant parameters.

The input map is typically an input from the python interface.

Public Types

using VarParam = std::variant<real, std::vector<real>, std::vector<real2>, std::string, bool>
A variant that contains the possible types to represent parameters.

using MapParams = std::map<std::string, VarParam>
Represents the map from parameter names to parameter values.

Public Functions

ParametersWrap(const MapParams ¶ms)
Construct a ParametersWrap object from a MapParams.

template <typename T>
bool exists(const std::string &key)

Check if a parameter of a given type and name exists in the map.

Return true if T and key match, false otherwise.

Template Parameters

• T: The type of the parameter

Parameters

• key: The name of the parameter to check

void checkAllRead() const
Die if some keys were not read (see read())

template <typename T>
T read(const std::string &key)

Fetch a parameter value for a given key.

On success, this method will also mark internally the parameter as read. This allows to check if some
parameters were never used (see checkAllRead()).

Template Parameters

• T: the type of the parameter to read.

Parameters

• key: the parameter name to read.

This method dies if key does not exist or if T is the wrong type.

179

StepRandomGen

class StepRandomGen
A random number generator that generates a different number at every time step but returns the same number
while the time step is not updated.

Used to generate independant random numbers at every time step. Several calls at the same time step will return
the same random number. This is used to keep the interactionssymmetric accross ranks (pairwise particle halo
interactions are computed twice, once on each rank. The random seed must therefore be the same and only
depend on the time step, not the rank).

Public Functions

StepRandomGen(long seed)
construct a StepRandomGen

Parameters

• seed: The random seed.

real generate(const MirState *state)
Generates a random number from the current state.

Return a random number uniformly distributed on [0.001, 1].

Parameters

• state: The currenst state that contains time step info.

Friends

std::ofstream &operator<<(std::ofstream &stream, const StepRandomGen &gen)
serialization helper

std::ifstream &operator>>(std::ifstream &stream, StepRandomGen &gen)
deserialization helper

18.12 Logger

Example of a log entry:

15:10:35:639 Rank 0000 INFO at /Mirheo/src/mirheo/core/logger.cpp:54 Compiled
→˓with maximum debug level 10
15:10:35:640 Rank 0000 INFO at /Mirheo/src/mirheo/core/logger.cpp:56 Debug level
→˓requested 3, set to 3
15:10:35:640 Rank 0000 INFO at /Mirheo/src/mirheo/core/mirheo.cpp:110 Program
→˓started, splitting communicator
15:10:35:684 Rank 0000 INFO at /Mirheo/src/mirheo/core/mirheo.cpp:58 Detected 1
→˓ranks per node, my intra-node ID will be 0
15:10:35:717 Rank 0000 INFO at /Mirheo/src/mirheo/core/mirheo.cpp:65 Found 1 GPUs
→˓per node, will use GPU 0

180

API

class Logger
logging functionality with MPI support.

Each MPI process writes to its own file, prefixing messages with time stamps so that later the information may
be combined and sorted. Filenames have the following pattern, NNNNN is the MPI rank with leading zeros:
<common_name>_NNNNN.log

Debug level governs which messages to log will be printed (a higher level will dump more log messages).

Every logging call has an importance level associated with it, which is compared against the governing debug
level, e.g. debug() importance is 4 and error() importance is 1.

Logger logger;

has to be defined in one the objective file (typically the one that contains main()). Prior to any logging the
method init() must be called.

Public Functions

Logger()
Initialize the logger.

Experimental: logger can be automatically set to output to stdout by settings the
MIRHEO_LOGGER_AUTO_STDOUT environment variable to a non-zero value. This is useful in
multi-library contexts where multiple loggers may be created.

void init(MPI_Comm comm, const std::string &filename, int debugLvl = -1)
Setup the logger object.

Must be called before any logging method.

Parameters

• comm: MPI communicator that contains all ranks that will use the logger. If set to
MPI_COMM_NULL, the logger does not require MPI to be initialized.

• filename: log files will be prefixed with filename: e.g. file-
name_<rank_with_leading_zeros>.log

• debugLvl: debug level or -1 to use the default value

void init(MPI_Comm comm, FileWrapper fout, int debugLvl = -1)
Setup the logger object to write to a given file.

Parameters

• comm: MPI communicator that contains all ranks that will use the logger. If set to
MPI_COMM_NULL, the logger does not require MPI to be initialized.

• fout: file handler, must be open, typically stdout or stderr

• debugLvl: debug leve or -1 to use the default value

int getDebugLvl() const
return The current debug level

void setDebugLvl(int debugLvl)
set the debug level

181

Parameters

• debugLvl: debug level

void log(const char *key, const char *filename, int line, const char *pattern, ...) const
Main logging function.

Construct and dump a log entry with time prefix, importance string, filename and line number, and the
message itself.

This function is not supposed to be called directly, use appropriate macros instead, e.g. say(), error(),
debug().

Warning: When the debug level is higher or equal to the c flushThreshold_ member variable (default
8), every message is flushed to disk immediately. This may increase the runtime significantly and only
recommended to debug crashes.

Parameters

• key: The importance string, e.g. LOG or WARN

• filename: name of the current source file

• line: line number in the current source file

• pattern: message pattern to be passed to printf

void _die(const char *filename, int line, const char *fmt, ...) const
Calls log() and kills the application on a fatal error.

Print stack trace, error message, close the file and abort. See log() for parameters.

void _CUDA_die(const char *filename, int line, cudaError_t code) const
Calls _die() with the error message corresponding to the given CUDA error code.

Parameters

• filename: name of the current source file

• line: line number in the current source file

• code: CUDA error code (returned by a CUDA call)

void _MPI_die(const char *filename, int line, int code) const
Calls _die() with the error message corresponding to the given MPI error code.

Parameters

• filename: name of the current source file

• line: line number in the current source file

• code: MPI error code (returned by an MPI call)

void _CUDA_Check(const char *filename, const int line, cudaError_t code) const
check a CUDA error call and call _CUDA_die() in case of error

void _MPI_Check(const char *filename, const int line, const int code) const
check an MPI error call and call _MPI_die() in case of error

182

18.13 Marching Cubes

API

struct Triangle
simple tructure that represents a triangle in 3D

Public Members

real3 a
vertex 0

real3 b
vertex 1

real3 c
vertex 2

void mirheo::marching_cubes::computeTriangles(DomainInfo domain, real3 resolution,
const ImplicitSurfaceFunction &surface,
std::vector<Triangle> &triangles)

Create an explicit surface (triangles) from implicit surface (scalar field) using marching cubes.

Parameters

• domain: Domain information

• resolution: the number of grid points in each direction

• surface: The scalar field that represents implicitly the surface (0 levelset)

• triangles: The explicit surface representation

18.14 Mesh

Represent explicit surfaces on the device with triangle mesh. This was designed for close surfaces.

Internal structure

A mirheo::Mesh is composed of an array of vertices (it contains the coordinates of each vertex) and a list of faces.
Each entry of the faces is composed of three indices that correspond to the vertices in the corresponding triangle.

A mirheo::MembraneMesh contains also adjacent information. This is a mapping from one vertex index to the
indices of all adjacent vertices (that share an edge with the input vertex).

Example: In the following mesh, suppose that the maximum degree is maxDegree = 7, the adjacent lists have the
entries:

1 7 8 2 3 * * 0 3 4 5 6 7 * ...

The first part is the ordered list of adjacent vertices of vertex 0 (the * indicates that the entry will not be used). The
second part corresponds to vertex 1. The first entry in each list is arbitrary, only the order is important. The list of
adjacent vertices of vertex i starts at i * maxDegree.

183

3 4

0 1 52

8 7 6

API

Host classes

class Mesh
A triangle mesh structure.

The topology is represented by a list of faces (three vertex indices per face).

Subclassed by mirheo::MembraneMesh

Public Functions

Mesh()
Default constructor. no vertex and faces.

Mesh(const std::string &fileName)
Construct a Mesh from a off file.

Parameters

• fileName: The name of the file (contains the extension).

Mesh(const std::tuple<std::vector<real3>, std::vector<int3>> &mesh)
Construct a Mesh from a list of vertices and faces.

Mesh(const std::vector<real3> &vertices, const std::vector<int3> &faces)
Construct a Mesh from a list of vertices and faces.

Mesh(Mesh&&)
move constructor

184

Mesh &operator=(Mesh&&)
move assignment operator

int getNtriangles() const

Return the number of faces

int getNvertices() const

Return the number of vertices

int getMaxDegree() const

Return the maximum valence of all vertices

const PinnedBuffer<real4> &getVertices() const

Return the list of vertices

const PinnedBuffer<int3> &getFaces() const

Return the list of faces

class MembraneMesh : public mirheo::Mesh
A triangle mesh with face connectivity, adjacent vertices and geometric precomputed values.

This class was designed to assist MembraneInteraction.

A stress-free state can be associated to the mesh. The precomputed geometric quantities that are stored in the
object are computed from the stress free state.

Additionally to the list of faces (

See Mesh), this class contains a list of adjacent vertices for each vertex. The list is stored in a single array, each
vertex having a contiguous chunk of length maxDegree. See developer docs for more information.

Public Functions

MembraneMesh()
construct an empty mesh

MembraneMesh(const std::string &initialMesh)
Construct a MembraneMesh from an off file.

Note The stress free state will be the one given by initialMesh

Parameters

• initialMesh: File (in off format) that contains the mesh information.

MembraneMesh(const std::string &initialMesh, const std::string &stressFreeMesh)
Construct a MembraneMesh from an off file.

Note initialMesh and stressFreeMesh must have the same topology.

Parameters

• initialMesh: File (in off format) that contains the mesh information.

• stressFreeMesh: File (in off format) that contains the stress free state of the mesh.

185

MembraneMesh(const std::vector<real3> &vertices, const std::vector<int3> &faces)
Construct a MembraneMesh from a list of vertices and faces.

Note The stress free state is the same as the current mesh.

Parameters

• vertices: The vertex coordinates of the mesh

• faces: List of faces that contains the vertex indices.

MembraneMesh(const std::vector<real3> &vertices, const std::vector<real3> &stressFreeVertices,
const std::vector<int3> &faces)

Construct a MembraneMesh from a list of vertices and faces.

Parameters

• vertices: The vertex coordinates of the mesh

• stressFreeVertices: The vertex coordinates that represent the stress free state.

• faces: List of faces that contains the vertex indices.

MembraneMesh(MembraneMesh&&)
move constructor

MembraneMesh &operator=(MembraneMesh&&)
move assignment operator

const PinnedBuffer<int> &getAdjacents() const

Return The adjacency list of each vertex

const PinnedBuffer<int> &getDegrees() const

Return The degree of each vertex

class MeshDistinctEdgeSets
Stores sets of edges that share the same colors as computed by computeEdgeColors().

This allows to work on edges in parallel with no race conditions.

Public Functions

MeshDistinctEdgeSets(const MembraneMesh *mesh)
Construct a MeshDistinctEdgeSets.

Parameters

• mesh: The input mesh with adjacency lists.

int numColors() const

Return the number of colors in the associated mesh.

const PinnedBuffer<int2> &edgeSet(int color) const

Return The list of edges (vertex indices pairs) that have the given color.

186

Views

struct MeshView
A device-compatible structure that represents a triangle mesh topology (.

See Mesh)

Subclassed by mirheo::MembraneMeshView

Public Functions

MeshView(const Mesh *m)
Construct a MeshView from a Mesh.

Public Members

int nvertices
number of vertices

int ntriangles
number of faces

int3 *triangles
list of faces

struct MembraneMeshView : public mirheo::MeshView
A device-compatible structure that represents a data stored in a MembraneMesh additionally to its topology.

Public Functions

MembraneMeshView(const MembraneMesh *m)
Construct a MembraneMeshView from a MembraneMesh object.

Public Members

int maxDegree
maximum degree of all vertices

int *adjacent
lists of adjacent vertices

int *degrees
degree of each vertex

real *initialLengths
lengths of edges in the stress-free state

real *initialAreas
areas of each face in the stress-free state

real *initialDotProducts
do products between adjacent edges in the stress-free state

187

18.15 Mirheo Objects

All Mirheo objects must derive from this base class:

class MirObject
Base class for all the objects of Mirheo.

Subclassed by mirheo::MirSimulationObject, mirheo::Postprocess, mirheo::PostprocessPlugin,
mirheo::Simulation

Public Functions

MirObject(const std::string &name)
Construct a MirObject object.

Parameters

• name: Name of the object.

const std::string &getName() const
Return the name of the object.

const char *getCName() const
Return the name of the object in c style. Useful for printf.

virtual void checkpoint(MPI_Comm comm, const std::string &path, int checkPointId)
Save the state of the object on disk.

Parameters

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

• checkPointId: The id of the dump.

virtual void restart(MPI_Comm comm, const std::string &path)
Load the state of the object from the disk.

Parameters

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

std::string createCheckpointName(const std::string &path, const std::string &identifier,
const std::string &extension) const

Helper function to create file name for checkpoint/restart.

Return The file name.

Parameters

• path: The checkpoint/restart directory.

• identifier: An additional identifier, ignored if empty.

• extension: File extension.

188

std::string createCheckpointNameWithId(const std::string &path, const std::string &identi-
fier, const std::string &extension, int checkpointId)
const

Helper function to create file name for checkpoint/restart with a given Id.

Return The file name.

Parameters

• path: The checkpoint/restart directory.

• identifier: An additional identifier, ignored if empty.

• extension: File extension.

• checkpointId: Dump Id.

void createCheckpointSymlink(MPI_Comm comm, const std::string &path, const std::string
&identifier, const std::string &extension, int checkpointId)
const

Create a symlink with a name with no id to the file with a given id.

Parameters

• comm: MPI communicator to perform the I/O.

• path: The checkpoint/restart directory.

• identifier: An additional identifier, ignored if empty.

• extension: File extension.

• checkpointId: Dump Id.

class MirSimulationObject : public mirheo::MirObject
Base class for the objects of Mirheo simulation task.

Contains global information common to all objects.

Subclassed by mirheo::Bouncer, mirheo::Field, mirheo::Integrator, mirheo::Interaction,
mirheo::ObjectBelongingChecker, mirheo::ParticleVector, mirheo::SimulationPlugin, mirheo::Wall

Public Functions

MirSimulationObject(const MirState *state, const std::string &name)
Construct a MirSimulationObject object.

Parameters

• name: Name of the object.

• state: State of the simulation.

const MirState *getState() const
Return the simulation state.

virtual void setState(const MirState *state)
Set the simulation state.

189

18.16 Mirheo State

This class provides a global context to all Mirheo objects of the simulation.

class MirState
Global quantities accessible by all simulation objects in Mirheo.

Public Types

using TimeType = double
type used to store time information

using StepType = long long
type to store time step information

Public Functions

MirState(DomainInfo domain, real dt = (real)InvalidDt)
Construct a MirState object.

Parameters

• domain: The DomainInfo of the simulation

• dt: Simulation time step

void checkpoint(MPI_Comm comm, std::string path)
Save internal state to file.

Parameters

• comm: MPI comm of the simulation

• path: The directory in which to save the file

void restart(MPI_Comm comm, std::string path)
Load internal state from file.

Parameters

• comm: MPI comm of the simulation

• path: The directory from which to load the file

real getDt() const
Get the current time step dt.

Accessible only during Mirheo::run.

void setDt(real dt)
Set the time step dt.

Parameters

• dt: time step duration

190

Public Members

DomainInfo domain
Global DomainInfo.

TimeType currentTime
Current simulation time.

StepType currentStep
Current simulation step.

Public Static Attributes

constexpr real InvalidDt = -1
Special value used to initialize invalid dt.

18.17 Mirheo

The main coordinator class

API

class Mirheo
Coordinator class for a full simulation.

Manages and splits work between Simulation and Postprocess ranks.

Public Functions

Mirheo(int3 nranks3D, real3 globalDomainSize, LogInfo logInfo, CheckpointInfo checkpointInfo, real
maxObjHalfLength, bool gpuAwareMPI = false)

Construct a Mirheo object using MPI_COMM_WORLD.

The product of nranks3D must be equal to the number of available ranks (or hals if postprocess is used)

Note MPI will be initialized internally. If this constructor is used, the destructor will also finalize MPI.

Parameters

• nranks3D: Number of ranks along each cartesian direction.

• globalDomainSize: The full domain dimensions in length units. Must be positive.

• logInfo: Information about logging

• checkpointInfo: Information about checkpoint

• maxObjHalfLength: Half of the maximum length of all objects.

• gpuAwareMPI: true to use RDMA (must be compile with a MPI version that supports it)

Mirheo(MPI_Comm comm, int3 nranks3D, real3 globalDomainSize, LogInfo logInfo, CheckpointInfo
checkpointInfo, real maxObjHalfLength, bool gpuAwareMPI = false)

Construct a Mirheo object using a given communicator.

Note MPI will be NOT be initialized. If this constructor is used, the destructor will NOT finalize MPI.

191

void restart(std::string folder = "restart/")
reset the internal state from a checkpoint folder

MPI_Comm getWorldComm() const

Return the world communicator

bool isComputeTask() const

Return true if the current rank is a Simulation rank

bool isMasterTask() const

Return true if the current rank is the root (i.e. rank = 0)

bool isSimulationMasterTask() const

Return true if the current rank is the root within the simulation communicator

bool isPostprocessMasterTask() const

Return true if the current rank is the root within the postprocess communicator

void startProfiler()
start profiling for nvvp

void stopProfiler()
stop profiling for nvvp

void dumpDependencyGraphToGraphML(const std::string &fname, bool current) const
dump the task dependency of the simulation in graphML format.

Parameters

• fname: The file name to dump the graph to (without extension).

• current: if true, will only dump the current tasks; otherwise, will dump all possible ones.

void run(MirState::StepType niters, real dt)
advance the system for a given number of time steps

Parameters

• niters: number of interations

• dt: time step duration

void registerParticleVector(const std::shared_ptr<ParticleVector> &pv, const
std::shared_ptr<InitialConditions> &ic)

register a ParticleVector in the simulation and initialize it with the gien InitialConditions.

Parameters

• pv: The ParticleVector to register

• ic: The InitialConditions that will be applied to pv when registered

void registerInteraction(const std::shared_ptr<Interaction> &interaction)
register an Interaction

See setInteraction().

192

Parameters

• interaction: the Interaction to register.

void registerIntegrator(const std::shared_ptr<Integrator> &integrator)
register an Integrator

See setIntegrator().

Parameters

• integrator: the Integrator to register.

void registerWall(const std::shared_ptr<Wall> &wall, int checkEvery = 0)
register a Wall

Parameters

• wall: The Wall to register

• checkEvery: The particles that will bounce against this wall will be checked (inside/outside
log info) every this number of time steps. 0 means no check.

void registerBouncer(const std::shared_ptr<Bouncer> &bouncer)
register a Bouncer

See setBouncer().

Parameters

• bouncer: the Bouncer to register.

void registerPlugins(const std::shared_ptr<SimulationPlugin> &simPlugin, const
std::shared_ptr<PostprocessPlugin> &postPlugin)

register a SimulationPlugin

Parameters

• simPlugin: the SimulationPlugin to register (only relevant if the current rank is a compute
task).

• postPlugin: the PostprocessPlugin to register (only relevant if the current rank is a postprocess
task).

void registerPlugins(const PairPlugin &plugins)
More generic version of registerPlugins()

void registerObjectBelongingChecker(const std::shared_ptr<ObjectBelongingChecker>
&checker, ObjectVector *ov)

register a ObjectBelongingChecker

See applyObjectBelongingChecker()

Parameters

• checker: the ObjectBelongingChecker to register.

• ov: the associated ObjectVector (must be registered).

193

void deregisterIntegrator(Integrator *integrator)
deregister an Integrator

See registerIntegrator().

Parameters

• integrator: the Integrator to deregister.

void deregisterPlugins(SimulationPlugin *simPlugin, PostprocessPlugin *postPlugin)
deregister a Plugin

Parameters

• simPlugin: the SimulationPlugin to deregister (only relevant if the current rank is a compute
task).

• postPlugin: the PostprocessPlugin to deregister (only relevant if the current rank is a postpro-
cess task).

void setIntegrator(Integrator *integrator, ParticleVector *pv)
Assign a registered Integrator to a registered ParticleVector.

Parameters

• integrator: The registered integrator (will die if it was not registered)

• pv: The registered ParticleVector (will die if it was not registered)

void setInteraction(Interaction *interaction, ParticleVector *pv1, ParticleVector *pv2)
Assign two registered Interaction to two registered ParticleVector objects.

This was designed to handle PairwiseInteraction, which needs up to two ParticleVector. For self interac-
tion cases (such as MembraneInteraction), pv1 and pv2 must be the same.

Parameters

• interaction: The registered interaction (will die if it is not registered)

• pv1: The first registered ParticleVector (will die if it is not registered)

• pv2: The second registered ParticleVector (will die if it is not registered)

void setBouncer(Bouncer *bouncer, ObjectVector *ov, ParticleVector *pv)
Assign a registered Bouncer to registered ObjectVector and ParticleVector.

Parameters

• bouncer: The registered bouncer (will die if it is not registered)

• ov: The registered ObjectVector that contains the surface to bounce on (will die if it is not regis-
tered)

• pv: The registered ParticleVector to bounce (will die if it is not registered)

void setWallBounce(Wall *wall, ParticleVector *pv, real maximumPartTravel = 0.25f)
Set a registered ParticleVector to bounce on a registered Wall.

Parameters

• wall: The registered wall (will die if it is not registered)

194

• pv: The registered ParticleVector (will die if it is not registered)

• maximumPartTravel: Performance parameter. See Wall for more information.

MirState *getState()

Return the global state of the system

const MirState *getState() const

Return the global state of the system (const version)

Simulation *getSimulation()

Return the Simulation object; nullptr on postprocess tasks.

const Simulation *getSimulation() const
see getSimulation(); const version

std::shared_ptr<MirState> getMirState()
see getMirState(); shared_ptr version

void dumpWalls2XDMF(std::vector<std::shared_ptr<Wall>> walls, real3 h, const std::string &file-
name)

Compute the SDF field from the given walls and dump it to a file in xmf+h5 format.

Parameters

• walls: List of Wall objects. The union of these walls will be dumped.

• h: The grid spacing

• filename: The base name of the dumped files (without extension)

double computeVolumeInsideWalls(std::vector<std::shared_ptr<Wall>> walls, long nSamples-
PerRank = 100000)

Compute the volume inside the geometry formed by the given walls with simple Monte-Carlo integration.

Return The Monte-Carlo estimate of the volume

Parameters

• walls: List of Wall objects. The union of these walls form the geometry.

• nSamplesPerRank: The number of Monte-Carlo samples per rank

std::shared_ptr<ParticleVector> makeFrozenWallParticles(std::string pvName,
std::vector<std::shared_ptr<Wall>>
walls,
std::vector<std::shared_ptr<Interaction>>
interactions,
std::shared_ptr<Integrator> inte-
grator, real numDensity, real mass,
real dt, int nsteps)

Create a layer of frozen particles inside the given walls.

This will run a simulation of “bulk” particles and select the particles that are inside the effective cut-off
radius of the given list of interactions.

Return The frozen particles

Parameters

195

• pvName: The name of the frozen ParticleVector that will be created

• walls: The list of registered walls that need frozen particles

• interactions: List of interactions (not necessarily registered) that will be used to equilibrate
the particles

• integrator: Integrator object used to equilibrate the particles

• numDensity: The number density used to initialize the particles

• mass: The mass of one particle

• dt: Equilibration time step

• nsteps: Number of equilibration steps

std::shared_ptr<ParticleVector> makeFrozenRigidParticles(std::shared_ptr<ObjectBelongingChecker>
checker,
std::shared_ptr<ObjectVector>
shape,
std::shared_ptr<InitialConditions>
icShape,
std::vector<std::shared_ptr<Interaction>>
interactions,
std::shared_ptr<Integrator> in-
tegrator, real numDensity, real
mass, real dt, int nsteps)

Create frozen particles inside the given objects.

This will run a simulation of “bulk” particles and select the particles that are inside shape.

Return The frozen particles, with name “inside_” + name of shape

Note For now, the output ParticleVector has mass 1.0.

Parameters

• checker: The ObjectBelongingChecker to split inside particles

• shape: The ObjectVector that will be used to define inside particles

• icShape: The InitialConditions object used to set the objects positions

• interactions: List of interactions (not necessarily registered) that will be used to equilibrate
the particles

• integrator: Integrator object used to equilibrate the particles

• numDensity: The number density used to initialize the particles

• mass: The mass of one particle

• dt: Equilibration time step

• nsteps: Number of equilibration steps

std::shared_ptr<ParticleVector> applyObjectBelongingChecker(ObjectBelongingChecker
*checker, ParticleVector *pv,
int checkEvery, std::string
inside = "", std::string outside
= "")

Enable a registered ObjectBelongingChecker to split particles of a registered ParticleVector.

196

inside or outside can take the reserved value “none”, in which case the corresponding particles will
be deleted. Furthermore, exactly one of inside and outside must be the same as pv.

Parameters

• checker: The ObjectBelongingChecker (will die if it is not registered)

• pv: The registered ParticleVector that must be split (will die if it is not registered)

• checkEvery: The particle split will be performed every this amount of time steps.

• inside: Name of the ParticleVector that will contain the particles of pv that are inside the
objects. See below for more information.

• outside: Name of the ParticleVector that will contain the particles of pv that are outside the
objects. See below for more information.

If inside or outside has the name of a ParticleVector that is not registered, this call will create an
empty ParticleVector with the given name and register it in the Simulation. Otherwise the already
registered ParticleVector will be used.

void logCompileOptions() const
print the list of all compile options and their current value in the logs

18.18 Object Belonging checkers

See also the user interface.

Base class

class ObjectBelongingChecker : public mirheo::MirSimulationObject
Mark or split particles which are inside of a given ObjectVector.

The user must call setup() exactly once before any call of checkInner() or splitByBelonging().

Subclassed by mirheo::ObjectVectorBelongingChecker

Public Functions

ObjectBelongingChecker(const MirState *state, const std::string &name)
Construct a ObjectBelongingChecker object.

Parameters

• state: Simulation state.

• name: Name of the bouncer.

virtual void splitByBelonging(ParticleVector *src, ParticleVector *pvIn, ParticleVector
*pvOut, cudaStream_t stream) = 0

Split a ParticleVector into inside and outside particles.

The pvIn and pvOut ParticleVector can be set to nullptr, in which case they will be ignored. If pvIn
and src point to the same object, pvIn will contain only inside particles of src in the end. Otherwise,
pvIn will contain its original particles additionally to the inside particles of src. If pvOut and src
point to the same object, pvOut will contain only outside particles of src in the end. Otherwise, pvOut
will contain its original particles additionally to the outside particles of src.

197

Parameters

• src: The particles to split.

• pvIn: Buffer that will contain the inside particles.

• pvOut: Buffer that will contain the outside particles.

• stream: Stream used for the execution.

This method will die if the type of pvIn, pvOut and src have a different type.

Must be called after setup().

virtual void checkInner(ParticleVector *pv, CellList *cl, cudaStream_t stream) = 0
Prints number of inside and outside particles in the log as a Info entry.

Additionally, this will compute the inside/outside tags of the particles and store it inside this object in-
stance.

Parameters

• pv: The particles to check.

• cl: Cell lists of pv.

• stream: Stream used for execution.

Must be called after setup().

virtual void setup(ObjectVector *ov) = 0
Register the ObjectVector that defines inside and outside.

Parameters

• ov: The ObjectVector to register.

virtual std::vector<std::string> getChannelsToBeExchanged() const
Return the channels of the registered ObjectVector to be exchanged before splitting.

virtual ObjectVector *getObjectVector() = 0
Return the registered ObjectVector.

Derived classes

class ObjectVectorBelongingChecker : public mirheo::ObjectBelongingChecker
ObjectBelongingChecker base implementation.

Subclassed by mirheo::MeshBelongingChecker, mirheo::RodBelongingChecker,
mirheo::ShapeBelongingChecker< Shape >

Public Functions

ObjectVectorBelongingChecker(const MirState *state, const std::string &name)
Construct a ObjectVectorBelongingChecker object.

Parameters

• state: Simulation state.

• name: Name of the bouncer.

198

void splitByBelonging(ParticleVector *src, ParticleVector *pvIn, ParticleVector *pvOut, cudaS-
tream_t stream)

Split a ParticleVector into inside and outside particles.

The pvIn and pvOut ParticleVector can be set to nullptr, in which case they will be ignored. If pvIn
and src point to the same object, pvIn will contain only inside particles of src in the end. Otherwise,
pvIn will contain its original particles additionally to the inside particles of src. If pvOut and src
point to the same object, pvOut will contain only outside particles of src in the end. Otherwise, pvOut
will contain its original particles additionally to the outside particles of src.

Parameters

• src: The particles to split.

• pvIn: Buffer that will contain the inside particles.

• pvOut: Buffer that will contain the outside particles.

• stream: Stream used for the execution.

This method will die if the type of pvIn, pvOut and src have a different type.

Must be called after setup().

void checkInner(ParticleVector *pv, CellList *cl, cudaStream_t stream)
Prints number of inside and outside particles in the log as a Info entry.

Additionally, this will compute the inside/outside tags of the particles and store it inside this object in-
stance.

Parameters

• pv: The particles to check.

• cl: Cell lists of pv.

• stream: Stream used for execution.

Must be called after setup().

void setup(ObjectVector *ov)
Register the ObjectVector that defines inside and outside.

Parameters

• ov: The ObjectVector to register.

std::vector<std::string> getChannelsToBeExchanged() const
Return the channels of the registered ObjectVector to be exchanged before splitting.

ObjectVector *getObjectVector()
Return the registered ObjectVector.

class MeshBelongingChecker : public mirheo::ObjectVectorBelongingChecker
Check in/out status of particles against an ObjectVector with a triangle mesh.

class RodBelongingChecker : public mirheo::ObjectVectorBelongingChecker
Check in/out status of particles against a RodObjectVector.

199

Public Functions

RodBelongingChecker(const MirState *state, const std::string &name, real radius)
Construct a RodBelongingChecker object.

Parameters

• state: Simulation state.

• name: Name of the bouncer.

• radius: The radius of the rod. Must be positive.

template <class Shape>
class ShapeBelongingChecker : public mirheo::ObjectVectorBelongingChecker

Check in/out status of particles against a RigidShapedObjectVector.

Template Parameters

• Shape: The AnalyticShape that represent the shape of the objects.

18.19 Plugins

Interface

class Plugin
Base class to represent a Plugin.

Plugins are functionalities that are not required to run a simulation. Each plugin must have a SimulationPlugin
derived class, and, optionally, a compatible PostprocessPlugin derived class. The latter is used to perform
potentially expensive work asynchronously while the simulation is running (e.g. I/O).

Subclassed by mirheo::PostprocessPlugin, mirheo::SimulationPlugin

Public Functions

Plugin()
default constructor

virtual void handshake()
Used to communicate initial information between a SimulationPlugin and a PostprocessPlugin.

Does not do anything by default.

void setTag(int tag)
Set the tag that will be used internally to communicate between SimulationPlugin and a PostprocessPlugin.

Must be called before any other methods.

Parameters

• tag: The tag, must be unique (all plugins using the same intercommunicator must have a different
tag, see _setup())

class SimulationPlugin : public mirheo::Plugin, public mirheo::MirSimulationObject
Base class for the simulation side of a Plugin.

200

A simulation plugin is able to modify the state of the simulation. Depending on its action, one of the “hooks”
(e.g. beforeCellLists()) must be overriden (by default they do not do anything).

If a plugin needs reference to objects held by the simulation, it must be saved in its internal structure at setup()
time.

Subclassed by mirheo::AddForcePlugin, mirheo::AddFourRollMillForcePlugin,
mirheo::AddTorquePlugin, mirheo::AnchorParticlesPlugin, mirheo::Average3D,
mirheo::BerendsenThermostatPlugin, mirheo::DensityControlPlugin, mirheo::ExchangePVSFluxPlanePlugin,
mirheo::ExternalMagneticTorquePlugin, mirheo::ForceSaverPlugin, mirheo::ImposeProfilePlugin,
mirheo::ImposeVelocityPlugin, mirheo::MagneticDipoleInteractionsPlugin, mirheo::MembraneExtraForcePlugin,
mirheo::MeshPlugin, mirheo::MsdPlugin, mirheo::ObjStatsPlugin, mirheo::OutletPlugin,
mirheo::ParticleChannelAveragerPlugin, mirheo::ParticleChannelSaverPlugin,
mirheo::ParticleCheckerPlugin, mirheo::ParticleDisplacementPlugin, mirheo::ParticleDragPlugin,
mirheo::ParticleSenderPlugin, mirheo::PinObjectPlugin, mirheo::PinRodExtremityPlugin,
mirheo::RdfPlugin, mirheo::SimulationStats, mirheo::SimulationVelocityControl,
mirheo::TemperaturizePlugin, mirheo::VacfPlugin, mirheo::VelocityInletPlugin, mirheo::VirialPressurePlugin,
mirheo::WallForceCollectorPlugin, mirheo::WallRepulsionPlugin, mirheo::XYZPlugin

Public Functions

SimulationPlugin(const MirState *state, const std::string &name)
Construct a SimulationPlugin.

Parameters

• state: The global simulation state

• name: the name of the plugin (must be the same as that of the postprocess plugin)

virtual bool needPostproc() = 0

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

virtual void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &in-
terComm)

setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

virtual void beforeCellLists(cudaStream_t stream)
hook before building the cell lists

virtual void beforeForces(cudaStream_t stream)
hook before computing the forces and after the cell lists are created

virtual void beforeIntegration(cudaStream_t stream)
hook before integrating the particle vectors but after the forces are computed

201

virtual void afterIntegration(cudaStream_t stream)
hook after the ObjectVector objects are integrated but before redistribution and bounce back

virtual void beforeParticleDistribution(cudaStream_t stream)
hook before redistributing ParticleVector objects and after bounce

virtual void serializeAndSend(cudaStream_t stream)
Pack and send data to the postprocess rank.

Happens between beforeForces() and beforeIntegration().

Note This may happens while computing the forces.

virtual void finalize()
hook that happens once at the end of the simulation loop

class PostprocessPlugin : public mirheo::Plugin, public mirheo::MirObject
Base class for the postprocess side of a Plugin.

A postprocess plugin can only receive information from its associated SimulationPlugin. The use of such class
is to wait for a message and then deserialize it (where additional actions may be performed, such as I/O).

Subclassed by mirheo::AnchorParticlesStatsPlugin, mirheo::MeshDumper, mirheo::MsdDumper,
mirheo::ObjStatsDumper, mirheo::ParticleDumperPlugin, mirheo::PostprocessDensityControl,
mirheo::PostprocessStats, mirheo::PostprocessVelocityControl, mirheo::RdfDump,
mirheo::ReportPinObjectPlugin, mirheo::UniformCartesianDumper, mirheo::VacfDumper,
mirheo::VirialPressureDumper, mirheo::WallForceDumperPlugin, mirheo::XYZDumper

Public Functions

PostprocessPlugin(const std::string &name)
Construct a PostprocessPlugin.

Parameters

• name: the name of the plugin (must be the same as that of the associated simulation plugin)

virtual void setup(const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the PostprocessPlugin.

This method must be called before any other function call.

Parameters

• comm: Contains all postprocess ranks

• interComm: used to communicate with the simulation ranks

void recv()
Post an asynchronous receive request to get a message from the associated SimulationPlugin.

MPI_Request waitData()
wait for the completion of the asynchronous receive request. Must be called after recv() and before dese-
rialize().

virtual void deserialize() = 0
Perform the action implemented by the plugin using the data received from the SimulationPlugin.

202

List of plugins

Dump Plugins

These plugins do not modify the state of the simulation. They can be used to dump selected parts of the state of the
simulation to the disk.

class Average3D : public mirheo::SimulationPlugin
Average particles quantities into spacial bins over a cartesian grid and average it over time.

Useful to compute e.g. velocity or density profiles. The number density is always computed inside each bin, as
it is used to compute the averages. Other quantities must be specified by giving the channel names.

This plugin should be used with UniformCartesianDumper on the postprocessing side.

Cannot be used with multiple invocations of Mirheo.run.

Subclassed by mirheo::AverageRelative3D

Public Types

enum ChannelType
Specify the form of a channel data.

Values:

Scalar

Vector_real3

Vector_real4

Tensor6

None

Public Functions

Average3D(const MirState *state, std::string name, std::vector<std::string> pvNames,
std::vector<std::string> channelNames, int sampleEvery, int dumpEvery, real3 binSize)

Create an Average3D object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvNames: The list of names of the ParticleVector that will be used when averaging.

• channelNames: The list of particle data channels to average. Will die if the channel does not
exist.

• sampleEvery: Compute spatial averages every this number of time steps.

• dumpEvery: Compute time averages and send to the postprocess side every this number of time
steps.

• binSize: Size of one spatial bin along the three axes.

203

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void handshake()
Used to communicate initial information between a SimulationPlugin and a PostprocessPlugin.

Does not do anything by default.

void afterIntegration(cudaStream_t stream)
hook after the ObjectVector objects are integrated but before redistribution and bounce back

void serializeAndSend(cudaStream_t stream)
Pack and send data to the postprocess rank.

Happens between beforeForces() and beforeIntegration().

Note This may happens while computing the forces.

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

struct HostChannelsInfo
A helper structure that contains grid average info for all required channels.

Public Members

int n
The number of channels (excluding number density).

std::vector<std::string> names
List of channel names.

PinnedBuffer<ChannelType> types
List of channel data forms.

PinnedBuffer<real *> averagePtrs
List of averages of each channel.

PinnedBuffer<real *> dataPtrs
List of data to average, for each channel.

std::vector<DeviceBuffer<real>> average
data container for the averages, for each channel.

class AverageRelative3D : public mirheo::Average3D
Perform the same task as AverageRelative3D on a grid that moves relatively to a given object’s center of mass
in a RigidObjectVector.

Cannot be used with multiple invocations of Mirheo.run.

204

Public Functions

AverageRelative3D(const MirState *state, std::string name, std::vector<std::string> pvNames,
std::vector<std::string> channelNames, int sampleEvery, int dumpEvery, real3
binSize, std::string relativeOVname, int relativeID)

Create an AverageRelative3D object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvNames: The list of names of the ParticleVector that will be used when averaging.

• channelNames: The list of particle data channels to average. Will die if the channel does not
exist.

• sampleEvery: Compute spatial averages every this number of time steps.

• dumpEvery: Compute time averages and send to the postprocess side every this number of time
steps.

• binSize: Size of one spatial bin along the three axes.

• relativeOVname: Name of the RigidObjectVector that contains the reference object.

• relativeID: Index of the reference object within the RigidObjectVector.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void afterIntegration(cudaStream_t stream)
hook after the ObjectVector objects are integrated but before redistribution and bounce back

void serializeAndSend(cudaStream_t stream)
Pack and send data to the postprocess rank.

Happens between beforeForces() and beforeIntegration().

Note This may happens while computing the forces.

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class UniformCartesianDumper : public mirheo::PostprocessPlugin
Postprocessing side of Average3D or AverageRelative3D.

Dump uniform grid data to xmf + hdf5 format.

205

Public Functions

UniformCartesianDumper(std::string name, std::string path)
Create a UniformCartesianDumper.

Parameters

• name: The name of the plugin.

• path: The files will be dumped to pathXXXXX.[xmf,h5], where XXXXX is the time stamp.

void deserialize()
Perform the action implemented by the plugin using the data received from the SimulationPlugin.

void handshake()
Used to communicate initial information between a SimulationPlugin and a PostprocessPlugin.

Does not do anything by default.

XDMF::Channel getChannelOrDie(std::string chname) const
Get the average channel data.

Return The channel data.

Parameters

• chname: The name of the channel.

std::vector<int> getLocalResolution() const
Get the grid size in the local domain.

Return An array with 3 entries, contains the number of grid points along each direction.

class MeshPlugin : public mirheo::SimulationPlugin
Send mesh information of an object for dump to MeshDumper postprocess plugin.

Public Functions

MeshPlugin(const MirState *state, std::string name, std::string ovName, int dumpEvery)
Create a MeshPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• ovName: The name of the ObjectVector that has a mesh to dump.

• dumpEvery: Will dump the mesh every this number of timesteps.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

206

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void beforeForces(cudaStream_t stream)
hook before computing the forces and after the cell lists are created

void serializeAndSend(cudaStream_t stream)
Pack and send data to the postprocess rank.

Happens between beforeForces() and beforeIntegration().

Note This may happens while computing the forces.

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class MeshDumper : public mirheo::PostprocessPlugin
Postprocess side of MeshPlugin.

Receives mesh info and dump it to ply format.

Public Functions

MeshDumper(std::string name, std::string path)
Create a MeshDumper object.

Parameters

• name: The name of the plugin.

• path: The files will be dumped to path-XXXXX.ply.

void deserialize()
Perform the action implemented by the plugin using the data received from the SimulationPlugin.

void setup(const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the PostprocessPlugin.

This method must be called before any other function call.

Parameters

• comm: Contains all postprocess ranks

• interComm: used to communicate with the simulation ranks

class ParticleSenderPlugin : public mirheo::SimulationPlugin
Send particle data to ParticleDumperPlugin.

Subclassed by mirheo::ParticleWithMeshSenderPlugin, mirheo::ParticleWithPolylinesSenderPlugin

207

Public Functions

ParticleSenderPlugin(const MirState *state, std::string name, std::string pvName, int dumpEv-
ery, const std::vector<std::string> &channelNames)

Create a ParticleSenderPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvName: The name of the ParticleVector to dump.

• dumpEvery: Send the data to the postprocess side every this number of steps.

• channelNames: The list of channels to send, additionally to the default positions, velocities
and global ids.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void handshake()
Used to communicate initial information between a SimulationPlugin and a PostprocessPlugin.

Does not do anything by default.

void beforeForces(cudaStream_t stream)
hook before computing the forces and after the cell lists are created

void serializeAndSend(cudaStream_t stream)
Pack and send data to the postprocess rank.

Happens between beforeForces() and beforeIntegration().

Note This may happens while computing the forces.

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

Public Members

std::string pvName_
name of the ParticleVector to dump.

ParticleVector *pv_
pointer to the ParticleVector to dump.

208

std::vector<char> sendBuffer_
Buffer used to send the data to the postprocess side.

class ParticleDumperPlugin : public mirheo::PostprocessPlugin
Postprocess side of ParticleSenderPlugin.

Dump particles data to xmf + hdf5 format.

Subclassed by mirheo::ParticleWithMeshDumperPlugin, mirheo::ParticleWithPolylinesDumperPlugin

Public Functions

ParticleDumperPlugin(std::string name, std::string path)
Create a ParticleDumperPlugin object.

Parameters

• name: The name of the plugin.

• path: Particle data will be dumped to pathXXXXX.[xmf,h5].

void deserialize()
Perform the action implemented by the plugin using the data received from the SimulationPlugin.

void handshake()
Used to communicate initial information between a SimulationPlugin and a PostprocessPlugin.

Does not do anything by default.

class ParticleWithMeshSenderPlugin : public mirheo::ParticleSenderPlugin
Send particle data to ParticleWithMeshSenderPlugin.

Does the same as ParticleSenderPlugin with additional Mesh connectivity information. This is compatible only
with ObjectVector.

Public Functions

ParticleWithMeshSenderPlugin(const MirState *state, std::string name, std::string pvName,
int dumpEvery, const std::vector<std::string> &channel-
Names)

Create a ParticleWithMeshSenderPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvName: The name of the ParticleVector to dump.

• dumpEvery: Send the data to the postprocess side every this number of steps.

• channelNames: The list of channels to send, additionally to the default positions, velocities
and global ids.

209

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void handshake()
Used to communicate initial information between a SimulationPlugin and a PostprocessPlugin.

Does not do anything by default.

class ParticleWithMeshDumperPlugin : public mirheo::ParticleDumperPlugin
Postprocess side of ParticleWithMeshSenderPlugin.

Dump particles data with connectivity to xmf + hdf5 format.

Public Functions

ParticleWithMeshDumperPlugin(std::string name, std::string path)
Create a ParticleWithMeshDumperPlugin object.

Parameters

• name: The name of the plugin.

• path: Data will be dumped to pathXXXXX.[xmf,h5].

void handshake()
Used to communicate initial information between a SimulationPlugin and a PostprocessPlugin.

Does not do anything by default.

void deserialize()
Perform the action implemented by the plugin using the data received from the SimulationPlugin.

class XYZPlugin : public mirheo::SimulationPlugin
Send particle positions to XYZDumper.

Public Functions

XYZPlugin(const MirState *state, std::string name, std::string pvName, int dumpEvery)
Create a XYZPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvName: The name of the ParticleVector to dump.

• dumpEvery: Send the data to the postprocess side every this number of steps.

210

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void beforeForces(cudaStream_t stream)
hook before computing the forces and after the cell lists are created

void serializeAndSend(cudaStream_t stream)
Pack and send data to the postprocess rank.

Happens between beforeForces() and beforeIntegration().

Note This may happens while computing the forces.

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class XYZDumper : public mirheo::PostprocessPlugin
Postprocess side of XYZPlugin.

Dump the particle positions to simple .xyz format.

Public Functions

XYZDumper(std::string name, std::string path)
Create a XYZDumper object.

Parameters

• name: The name of the plugin.

• path: Data will be dumped to pathXXXXX.xyz.

void deserialize()
Perform the action implemented by the plugin using the data received from the SimulationPlugin.

void setup(const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the PostprocessPlugin.

This method must be called before any other function call.

Parameters

• comm: Contains all postprocess ranks

• interComm: used to communicate with the simulation ranks

211

Statistics and In-situ analysis Plugins

These plugins do not modify the state of the simulation. They are used to measure properties of the simulation that
can be processed directly at runtime. Their output is generally much lighter than dump plugins. The prefered format
is csv, to allow clean postprocessing from e.g. python.

class MsdPlugin : public mirheo::SimulationPlugin
Compute the mean squared distance (MSD) of a given ParticleVector.

The MSD is computed every dumpEvery steps on the time interval [startTime, endTime].

Each particle stores the total displacement from startTime. To compute this, it also stores its position at each
step.

Public Functions

MsdPlugin(const MirState *state, std::string name, std::string pvName, MirState::TimeType start-
Time, MirState::TimeType endTime, int dumpEvery)

Create a MsdPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvName: The name of the ParticleVector from which to measure the MSD.

• startTime: MSD will use this time as origin.

• endTime: The MSD will be reported only on [startTime, endTime].

• dumpEvery: Will send the MSD to the postprocess side every this number of steps, only during
the valid time interval.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void afterIntegration(cudaStream_t stream)
hook after the ObjectVector objects are integrated but before redistribution and bounce back

void serializeAndSend(cudaStream_t stream)
Pack and send data to the postprocess rank.

Happens between beforeForces() and beforeIntegration().

Note This may happens while computing the forces.

212

void handshake()
Used to communicate initial information between a SimulationPlugin and a PostprocessPlugin.

Does not do anything by default.

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class MsdDumper : public mirheo::PostprocessPlugin
Postprocess side of MsdPlugin.

Dumps the VACF in a csv file.

Public Functions

MsdDumper(std::string name, std::string path)
Create a MsdDumper object.

Parameters

• name: The name of the plugin.

• path: The folder that will contain the vacf csv file.

void deserialize()
Perform the action implemented by the plugin using the data received from the SimulationPlugin.

void setup(const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the PostprocessPlugin.

This method must be called before any other function call.

Parameters

• comm: Contains all postprocess ranks

• interComm: used to communicate with the simulation ranks

void handshake()
Used to communicate initial information between a SimulationPlugin and a PostprocessPlugin.

Does not do anything by default.

class ObjStatsPlugin : public mirheo::SimulationPlugin
Send object information to ObjStatsDumper.

Used to track the center of mass, linear and angular velocities, orintation, forces and torques of an ObjectVector.

Public Functions

ObjStatsPlugin(const MirState *state, std::string name, std::string ovName, int dumpEvery)
Create a ObjStatsPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

213

• ovName: The name of the ObjectVector to extract the information from.

• dumpEvery: Send the information to the postprocess side every this number of steps.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void afterIntegration(cudaStream_t stream)
hook after the ObjectVector objects are integrated but before redistribution and bounce back

void serializeAndSend(cudaStream_t stream)
Pack and send data to the postprocess rank.

Happens between beforeForces() and beforeIntegration().

Note This may happens while computing the forces.

void handshake()
Used to communicate initial information between a SimulationPlugin and a PostprocessPlugin.

Does not do anything by default.

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class ObjStatsDumper : public mirheo::PostprocessPlugin
Postprocess side of ObjStatsPlugin.

Dump object information to a csv file.

Public Functions

ObjStatsDumper(std::string name, std::string filename)
Create a ObjStatsDumper object.

Parameters

• name: The name of the plugin.

• filename: The name of the csv file to dump to.

void deserialize()
Perform the action implemented by the plugin using the data received from the SimulationPlugin.

void setup(const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the PostprocessPlugin.

This method must be called before any other function call.

214

Parameters

• comm: Contains all postprocess ranks

• interComm: used to communicate with the simulation ranks

void handshake()
Used to communicate initial information between a SimulationPlugin and a PostprocessPlugin.

Does not do anything by default.

void checkpoint(MPI_Comm comm, const std::string &path, int checkPointId)
Save the state of the object on disk.

Parameters

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

• checkPointId: The id of the dump.

void restart(MPI_Comm comm, const std::string &path)
Load the state of the object from the disk.

Parameters

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

class RdfPlugin : public mirheo::SimulationPlugin
Measure the radial distribution function (RDF) of a ParticleVector.

The RDF is estimated periodically from ensemble averages. See RdfDump for the I/O.

Public Functions

RdfPlugin(const MirState *state, std::string name, std::string pvName, real maxDist, int nbins, int
computeEvery)

Create a RdfPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvName: The name of the ParticleVector from which to measure the RDF.

• maxDist: The RDF will be measured on [0, maxDist].

• nbins: The number of bins in the interval [0, maxDist].

• computeEvery: The number of time steps between two RDF evaluations and dump.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

215

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void afterIntegration(cudaStream_t stream)
hook after the ObjectVector objects are integrated but before redistribution and bounce back

void serializeAndSend(cudaStream_t stream)
Pack and send data to the postprocess rank.

Happens between beforeForces() and beforeIntegration().

Note This may happens while computing the forces.

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class RdfDump : public mirheo::PostprocessPlugin
Postprocess side of RdfPlugin.

Dump the RDF to a csv file.

Public Functions

RdfDump(std::string name, std::string basename)
Create a RdfDump object.

Parameters

• name: The name of the plugin.

• basename: The RDF will be dumped to basenameXXXXX.csv.

void setup(const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the PostprocessPlugin.

This method must be called before any other function call.

Parameters

• comm: Contains all postprocess ranks

• interComm: used to communicate with the simulation ranks

void deserialize()
Perform the action implemented by the plugin using the data received from the SimulationPlugin.

class SimulationStats : public mirheo::SimulationPlugin
Collect global statistics of the simulation and send it to the postprocess ranks.

Compute total linear momentum and estimate of temperature. Furthermore, measures average wall time of time
steps.

216

Public Functions

SimulationStats(const MirState *state, std::string name, int every, std::vector<std::string> pv-
Names)

Create a SimulationPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• every: Compute the statistics every this number of steps.

• pvNames: List of names of the pvs to compute statistics from. If empty, will take all the pvs in
the simulation.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void afterIntegration(cudaStream_t stream)
hook after the ObjectVector objects are integrated but before redistribution and bounce back

void serializeAndSend(cudaStream_t stream)
Pack and send data to the postprocess rank.

Happens between beforeForces() and beforeIntegration().

Note This may happens while computing the forces.

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class PostprocessStats : public mirheo::PostprocessPlugin
Dump the stats sent by SimulationStats to a csv file and to the console output.

Public Functions

PostprocessStats(std::string name, std::string filename = std::string())
Construct a PostprocessStats plugin.

Parameters

• name: The name of the plugin.

• filename: The csv file name that will be dumped.

217

void deserialize()
Perform the action implemented by the plugin using the data received from the SimulationPlugin.

void checkpoint(MPI_Comm comm, const std::string &path, int checkPointId)
Save the state of the object on disk.

Parameters

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

• checkPointId: The id of the dump.

void restart(MPI_Comm comm, const std::string &path)
Load the state of the object from the disk.

Parameters

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

class VacfPlugin : public mirheo::SimulationPlugin
Compute the velocity autocorrelation function (VACF) of a given ParticleVector.

The VACF is computed every dumpEvery steps on the time interval [startTime, endTime].

Public Functions

VacfPlugin(const MirState *state, std::string name, std::string pvName, MirState::TimeType start-
Time, MirState::TimeType endTime, int dumpEvery)

Create a VacfPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvName: The name of the ParticleVector from which to measure the VACF.

• startTime: VACF will use this time as origin.

• endTime: The VACF will be reported only on [startTime, endTime].

• dumpEvery: Will send the VACF to the postprocess side every this number of steps, only during
the valid time interval.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

218

• interComm: used to communicate with the postprocess ranks

void afterIntegration(cudaStream_t stream)
hook after the ObjectVector objects are integrated but before redistribution and bounce back

void serializeAndSend(cudaStream_t stream)
Pack and send data to the postprocess rank.

Happens between beforeForces() and beforeIntegration().

Note This may happens while computing the forces.

void handshake()
Used to communicate initial information between a SimulationPlugin and a PostprocessPlugin.

Does not do anything by default.

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class VacfDumper : public mirheo::PostprocessPlugin
Postprocess side of VacfPlugin.

Dumps the VACF in a csv file.

Public Functions

VacfDumper(std::string name, std::string path)
Create a VacfDumper object.

Parameters

• name: The name of the plugin.

• path: The folder that will contain the vacf csv file.

void deserialize()
Perform the action implemented by the plugin using the data received from the SimulationPlugin.

void setup(const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the PostprocessPlugin.

This method must be called before any other function call.

Parameters

• comm: Contains all postprocess ranks

• interComm: used to communicate with the simulation ranks

void handshake()
Used to communicate initial information between a SimulationPlugin and a PostprocessPlugin.

Does not do anything by default.

class VirialPressurePlugin : public mirheo::SimulationPlugin
Compute the pressure in a given region from the virial theorem and send it to the VirialPressureDumper.

219

Public Functions

VirialPressurePlugin(const MirState *state, std::string name, std::string pvName, FieldFunc-
tion func, real3 h, int dumpEvery)

Create a VirialPressurePlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvName: The name of the ParticleVector to add the particles to.

• func: The scalar field is negative in the region of interest and positive outside.

• h: The grid size used to discretize the field.

• dumpEvery: Will compute and send the pressure every this number of steps.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void afterIntegration(cudaStream_t stream)
hook after the ObjectVector objects are integrated but before redistribution and bounce back

void serializeAndSend(cudaStream_t stream)
Pack and send data to the postprocess rank.

Happens between beforeForces() and beforeIntegration().

Note This may happens while computing the forces.

void handshake()
Used to communicate initial information between a SimulationPlugin and a PostprocessPlugin.

Does not do anything by default.

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class VirialPressureDumper : public mirheo::PostprocessPlugin
Postprocess side of VirialPressurePlugin.

Recieves and dump the virial pressure.

220

Public Functions

VirialPressureDumper(std::string name, std::string path)
Create a VirialPressureDumper.

Parameters

• name: The name of the plugin.

• path: The csv file to which the data will be dumped.

void deserialize()
Perform the action implemented by the plugin using the data received from the SimulationPlugin.

void setup(const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the PostprocessPlugin.

This method must be called before any other function call.

Parameters

• comm: Contains all postprocess ranks

• interComm: used to communicate with the simulation ranks

void handshake()
Used to communicate initial information between a SimulationPlugin and a PostprocessPlugin.

Does not do anything by default.

class WallForceCollectorPlugin : public mirheo::SimulationPlugin
Compute the force exerted by particles on the walls.

It has two contributions:

• Interactio forces with frozen particles

• bounce-back.

Public Functions

WallForceCollectorPlugin(const MirState *state, std::string name, std::string wallName,
std::string frozenPvName, int sampleEvery, int dumpEvery)

Create a WallForceCollectorPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• wallName: The name of the Wall to collect the forces from.

• frozenPvName: The name of the frozen ParticleVector assigned to the wall.

• sampleEvery: Compute forces every this number of steps, and average it in time.

• dumpEvery: Send the average forces to the postprocessing side every this number of steps.

221

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void afterIntegration(cudaStream_t stream)
hook after the ObjectVector objects are integrated but before redistribution and bounce back

void serializeAndSend(cudaStream_t stream)
Pack and send data to the postprocess rank.

Happens between beforeForces() and beforeIntegration().

Note This may happens while computing the forces.

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class WallForceDumperPlugin : public mirheo::PostprocessPlugin
Postprocess side of WallForceCollectorPlugin.

Dump the forces to a txt file.

Public Functions

WallForceDumperPlugin(std::string name, std::string filename, bool detailedDump)
Create a WallForceDumperPlugin.

Parameters

• name: The name of the plugin.

• filename: The file to dump the stats to.

• detailedDump: If true, the file will contain the bounce contribution and particle interactions
contributions instead of the sum.

void deserialize()
Perform the action implemented by the plugin using the data received from the SimulationPlugin.

Modifier plugins

These plugins add more functionalities to the simulation.

class AddForcePlugin : public mirheo::SimulationPlugin
Add a constant force to every particle of a given ParticleVector at every time step.

The force is added at the beforeForce() stage.

222

Public Functions

AddForcePlugin(const MirState *state, const std::string &name, const std::string &pvName,
real3 force)

Create a AddForcePlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvName: The name of the ParticleVector to which the force should be applied.

• force: The force to apply.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void beforeForces(cudaStream_t stream)
hook before computing the forces and after the cell lists are created

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class AddTorquePlugin : public mirheo::SimulationPlugin
Add a constant torque to every object of a given RigidObjectVector at every time step.

The torque is added at the beforeForce() stage.

Public Functions

AddTorquePlugin(constMirState *state, const std::string &name, const std::string &rovName,
real3 torque)

Create a AddTorquePlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• rovName: The name of the RigidObjectVector to which the torque should be applied.

• torque: The torque to apply.

223

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void beforeForces(cudaStream_t stream)
hook before computing the forces and after the cell lists are created

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class AnchorParticlesPlugin : public mirheo::SimulationPlugin
Add constraints on the positions and velocities of given particles of a ParticleVector.

The forces required to keep the particles along the given constrains are recorded and reported via AnchorParti-
clesStatsPlugin.

Note This should not be used with RigidObjectVector.

Note This was designed to work with ObjectVectors containing a single object, on a single rank. Using a plain
ParticleVector might not work since particles will be reordered.

Public Functions

AnchorParticlesPlugin(const MirState *state, std::string name, std::string pvName, Func-
Time3D positions, FuncTime3D velocities, std::vector<int> pids, int re-
portEvery)

Create a AnchorParticlesPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvName: The name of the ParticleVector that contains the particles of interest.

• positions: The constrains on the positions.

• velocities: The constrains on the velocities.

• pids: The concerned particle ids (starting from 0). See the restrictions in the class docs.

• reportEvery: Statistics (forces) will be sent to the AnchorParticlesStatsPlugin every this num-
ber of steps.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

224

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void afterIntegration(cudaStream_t stream)
hook after the ObjectVector objects are integrated but before redistribution and bounce back

void serializeAndSend(cudaStream_t stream)
Pack and send data to the postprocess rank.

Happens between beforeForces() and beforeIntegration().

Note This may happens while computing the forces.

void handshake()
Used to communicate initial information between a SimulationPlugin and a PostprocessPlugin.

Does not do anything by default.

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class AnchorParticlesStatsPlugin : public mirheo::PostprocessPlugin
Postprocessing side of AnchorParticlesPlugin.

Reports the forces required to achieve the constrains in a csv file.

Public Functions

AnchorParticlesStatsPlugin(std::string name, std::string path)
Create a AnchorParticlesStatsPlugin object.

Parameters

• name: The name of the plugin.

• path: The directory to which the stats will be dumped. Will create a single file path/
<pv_name>.csv.

void deserialize()
Perform the action implemented by the plugin using the data received from the SimulationPlugin.

void setup(const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the PostprocessPlugin.

This method must be called before any other function call.

Parameters

• comm: Contains all postprocess ranks

• interComm: used to communicate with the simulation ranks

225

void handshake()
Used to communicate initial information between a SimulationPlugin and a PostprocessPlugin.

Does not do anything by default.

class BerendsenThermostatPlugin : public mirheo::SimulationPlugin
Apply Berendsen thermostat to the given particles.

Public Functions

BerendsenThermostatPlugin(const MirState *state, std::string name, std::vector<std::string>
pvNames, real kBT, real tau, bool increaseIfLower)

Create a BerendsenThermostatPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvNames: The list of names of the concerned ParticleVector s.

• kBT: The target temperature, in energy units.

• tau: The relaxation time.

• increaseIfLower: Whether to increase the temperature if it’s lower than the target tempera-
ture.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void afterIntegration(cudaStream_t stream)
hook after the ObjectVector objects are integrated but before redistribution and bounce back

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class DensityControlPlugin : public mirheo::SimulationPlugin
Apply forces on particles in order to keep the number density constant within layers in a field.

The layers are determined by the level sets of the field. Forces are perpendicular to these layers; their magnitude
is computed from PID controllers.

Cannot be used with multiple invocations of Mirheo.run.

226

Public Types

using RegionFunc = std::function<real(real3)>
functor that describes the region in terms of level sets.

Public Functions

DensityControlPlugin(const MirState *state, std::string name, std::vector<std::string> pv-
Names, real targetDensity, RegionFunc region, real3 resolution, real lev-
elLo, real levelHi, real levelSpace, real Kp, real Ki, real Kd, int tuneEvery,
int dumpEvery, int sampleEvery)

Create a DensityControlPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvNames: The names of the ParticleVector that have the target density..

• targetDensity: The target number density.

• region: The field used to partition the space.

• resolution: The grid spacing used to discretized region

• levelLo: The minimum level set of the region to control.

• levelHi: The maximum level set of the region to control.

• levelSpace: Determines the difference between 2 consecutive layers in the partition of space.

• Kp: “Proportional” coefficient of the PID.

• Ki: “Integral” coefficient of the PID.

• Kd: “Derivative” coefficient of the PID.

• tuneEvery: Update th PID controllers every this number of steps.

• dumpEvery: Dump statistics every this number of steps. See also PostprocessDensityControl.

• sampleEvery: Sample statistics every this number of steps. Used by PIDs.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void beforeForces(cudaStream_t stream)
hook before computing the forces and after the cell lists are created

227

void serializeAndSend(cudaStream_t stream)
Pack and send data to the postprocess rank.

Happens between beforeForces() and beforeIntegration().

Note This may happens while computing the forces.

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

void checkpoint(MPI_Comm comm, const std::string &path, int checkPointId)
Save the state of the object on disk.

Parameters

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

• checkPointId: The id of the dump.

void restart(MPI_Comm comm, const std::string &path)
Load the state of the object from the disk.

Parameters

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

struct LevelBounds
Helper structure to partition the space.

Public Members

real lo
Smallest level set.

real hi
Largest level set.

real space
Difference between two level sets.

class ExternalMagneticTorquePlugin : public mirheo::SimulationPlugin
Apply a magnetic torque on given a RigidObjectVector.

Public Types

using UniformMagneticFunc = std::function<real3(real)>
Time varying uniform field.

228

Public Functions

ExternalMagneticTorquePlugin(const MirState *state, std::string name, std::string rovName,
real3 moment, UniformMagneticFunc magneticFunction)

Create a ExternalMagneticTorquePlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• rovName: The name of the RigidObjectVector to apply the torque to.

• moment: The constant magnetic moment of one object, in its frame of reference.

• magneticFunction: The external uniform magnetic field which possibly varies in time.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void beforeForces(cudaStream_t stream)
hook before computing the forces and after the cell lists are created

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class PostprocessDensityControl : public mirheo::PostprocessPlugin
Postprocessing side of DensityControlPlugin.

Dumps the density and force in each layer of the space partition.

Public Functions

PostprocessDensityControl(std::string name, std::string filename)
Create a PostprocessDensityControl object.

Parameters

• name: The name of the plugin.

• filename: The txt file that will contain the density and corresponding force magnitudes in each
layer.

void deserialize()
Perform the action implemented by the plugin using the data received from the SimulationPlugin.

229

class ParticleDisplacementPlugin : public mirheo::SimulationPlugin
Compute the dispacement of particles between a given number of time steps.

Public Functions

ParticleDisplacementPlugin(const MirState *state, std::string name, std::string pvName, int
updateEvery)

Create a ParticleDisplacementPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvName: The name of the concerned ParticleVector.

• updateEvery: The number of steps between two steps used to compute the displacement.

void afterIntegration(cudaStream_t stream)
hook after the ObjectVector objects are integrated but before redistribution and bounce back

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class ExchangePVSFluxPlanePlugin : public mirheo::SimulationPlugin
Transfer particles from one ParticleVector to another when they cross a given plane.

Public Functions

ExchangePVSFluxPlanePlugin(const MirState *state, std::string name, std::string pv1Name,
std::string pv2Name, real4 plane)

Create a ExchangePVSFluxPlanePlugin object.

The particle has crossed the plane if a *x + b * y + c * z + d goes from negative to positive.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pv1Name: The name of the source ParticleVector. Only particles from this ParticleVector are
transfered.

230

• pv2Name: The name of the destination ParticleVector.

• plane: Coefficients of the plane to be crossed, (a, b, c, d).

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void beforeCellLists(cudaStream_t stream)
hook before building the cell lists

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class ForceSaverPlugin : public mirheo::SimulationPlugin
Copies the forces of a given ParticleVector to a new channel at every time step.

This allows to dump the forces since they are reset to zero at every time step.

Public Functions

ForceSaverPlugin(const MirState *state, std::string name, std::string pvName)
Create a ForceSaverPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvName: The name of the ParticleVector to save forces from and to.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

231

void beforeIntegration(cudaStream_t stream)
hook before integrating the particle vectors but after the forces are computed

class ImposeProfilePlugin : public mirheo::SimulationPlugin
Set the velocity to a given one in a box.

The velocity is set to a constant plus a random velocity that has a Maxwell distribution.

Public Functions

ImposeProfilePlugin(const MirState *state, std::string name, std::string pvName, real3 low,
real3 high, real3 targetVel, real kBT)

Create a ImposeProfilePlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvName: The name of the ParticleVector to modify.

• low: Lower coordinates of the region of interest.

• high: Upper coordinates of the region of interest.

• targetVel: The constant part of the new velocity.

• kBT: Temperature used to draw the velocity from the maxwellian distribution.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

void afterIntegration(cudaStream_t stream)
hook after the ObjectVector objects are integrated but before redistribution and bounce back

class ImposeVelocityPlugin : public mirheo::SimulationPlugin
Add a constant to the velocity of particles in a given region such that it matches a given average.

Public Functions

ImposeVelocityPlugin(const MirState *state, std::string name, std::vector<std::string> pv-
Names, real3 low, real3 high, real3 targetVel, int every)

Create a ImposeVelocityPlugin object.

232

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvNames: The name of the (list of) ParticleVector to modify.

• low: Lower coordinates of the region of interest.

• high: Upper coordinates of the region of interest.

• targetVel: The target average velocity in the region.

• every: Correct the velocity every this number of time steps.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void afterIntegration(cudaStream_t stream)
hook after the ObjectVector objects are integrated but before redistribution and bounce back

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

void setTargetVelocity(real3 v)
Change the target velocity to a new value.

Parameters

• v: The new target velocity.

class MagneticDipoleInteractionsPlugin : public mirheo::SimulationPlugin
Compute the magnetic dipole-dipole forces and torques induced by the interactions between rigid objects that
have a magnetic moment.

Public Functions

MagneticDipoleInteractionsPlugin(const MirState *state, std::string name, std::string rov-
Name, real3 moment, real mu0)

Create a MagneticDipoleInteractionsPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• rovName: The name of the RigidObjectVector interacting.

233

• moment: The constant magnetic moment of one object, in its frame of reference.

• mu0: The magnetic permeability of the medium.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void beforeCellLists(cudaStream_t stream)
hook before building the cell lists

void beforeForces(cudaStream_t stream)
hook before computing the forces and after the cell lists are created

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class OutletPlugin : public mirheo::SimulationPlugin
Base class for outlet Plugins.

Outlet plugins delete particles of given a ParticleVector list in a region.

Subclassed by mirheo::PlaneOutletPlugin, mirheo::RegionOutletPlugin

Public Functions

OutletPlugin(const MirState *state, std::string name, std::vector<std::string> pvNames)
Create a OutletPlugin.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvNames: List of names of the ParticleVector that the outlet will be applied to.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

234

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class PlaneOutletPlugin : public mirheo::OutletPlugin
Delete all particles that cross a given plane.

Public Functions

PlaneOutletPlugin(const MirState *state, std::string name, std::vector<std::string> pvNames,
real4 plane)

Create a PlaneOutletPlugin.

A particle crosses the plane if a*x + b*y + c*z + d goes from nbegative to postive accross one time step.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvNames: List of names of the ParticleVector that the outlet will be applied to.

• plane: Coefficients (a, b, c, d) of the plane.

void beforeCellLists(cudaStream_t stream)
hook before building the cell lists

class RegionOutletPlugin : public mirheo::OutletPlugin
Delete all particles in a given region, defined implicitly by a field.

A particle is considered inside the region if the given field is negative at the particle’s position.

Subclassed by mirheo::DensityOutletPlugin, mirheo::RateOutletPlugin

Public Types

using RegionFunc = std::function<real(real3)>
A scalar field to represent inside (negative) / outside (positive) region.

Public Functions

RegionOutletPlugin(const MirState *state, std::string name, std::vector<std::string> pvNames,
RegionFunc region, real3 resolution)

Create a RegionOutletPlugin.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvNames: List of names of the ParticleVector that the outlet will be applied to.

• region: The field that describes the region. This will be sampled on a uniform grid and uploaded
to the GPU.

• resolution: The grid space used to discretize region.

235

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class DensityOutletPlugin : public mirheo::RegionOutletPlugin
Delete particles located in a given region if the number density is higher than a target one.

Public Functions

DensityOutletPlugin(const MirState *state, std::string name, std::vector<std::string> pvNames,
real numberDensity, RegionFunc region, real3 resolution)

Create a DensityOutletPlugin.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvNames: List of names of the ParticleVector that the outlet will be applied to.

• numberDensity: The target number density.

• region: The field that describes the region. This will be sampled on a uniform grid and uploaded
to the GPU.

• resolution: The grid space used to discretize region.

void beforeCellLists(cudaStream_t stream)
hook before building the cell lists

class RateOutletPlugin : public mirheo::RegionOutletPlugin
Delete particles located in a given region at a given rate.

Public Functions

RateOutletPlugin(const MirState *state, std::string name, std::vector<std::string> pvNames, real
rate, RegionFunc region, real3 resolution)

Create a RateOutletPlugin.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

236

• pvNames: List of names of the ParticleVector that the outlet will be applied to.

• rate: The rate of deletion of particles.

• region: The field that describes the region. This will be sampled on a uniform grid and uploaded
to the GPU.

• resolution: The grid space used to discretize region.

void beforeCellLists(cudaStream_t stream)
hook before building the cell lists

class ParticleChannelAveragerPlugin : public mirheo::SimulationPlugin
Average over time a particle vector channel.

Public Functions

ParticleChannelAveragerPlugin(constMirState *state, std::string name, std::string pvName,
std::string channelName, std::string averageName, real up-
dateEvery)

Create a ParticleChannelAveragerPlugin.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvName: The name of the ParticleVector.

• channelName: The name of the channel to average. Will fail if it does not exist.

• averageName: The name of the new channel, that will contain the time-averaged quantity..

• updateEvery: Will reset the averaged channel every this number of steps. Must be positive.

void beforeIntegration(cudaStream_t stream)
hook before integrating the particle vectors but after the forces are computed

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

class ParticleChannelSaverPlugin : public mirheo::SimulationPlugin
Copies a given channel to another one that will “stick” to the particle vector.

This is useful to collect statistics on non permanent quantities (e.g. stresses).

237

Public Functions

ParticleChannelSaverPlugin(const MirState *state, std::string name, std::string pvName,
std::string channelName, std::string savedName)

Create a ParticleChannelSaverPlugin.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvName: The name of the ParticleVector.

• channelName: The name of the channel to save at every time step. Will fail if it does not exist.

• savedName: The name of the new channel.

void beforeIntegration(cudaStream_t stream)
hook before integrating the particle vectors but after the forces are computed

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

class ParticleDragPlugin : public mirheo::SimulationPlugin
Apply a drag force proportional to the velocity of every particle in a ParticleVector.

Public Functions

ParticleDragPlugin(const MirState *state, std::string name, std::string pvName, real drag)
Create a ParticleDragPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvName: The name of the ParticleVector to which the force should be applied.

• drag: The drag coefficient applied to each particle.

238

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void beforeForces(cudaStream_t stream)
hook before computing the forces and after the cell lists are created

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class PinObjectPlugin : public mirheo::SimulationPlugin
Add constraints on objects of an ObjectVector.

This modifies the velocities and forces on the objects in order to satisfy the given constraints on linear and
angular velocities.

This plugin also collects statistics on the required forces and torques used to maintain the constraints. This may
be useful to e.g. measure the drag around objects. See ReportPinObjectPlugin.

Public Functions

PinObjectPlugin(const MirState *state, std::string name, std::string ovName, real3 translation,
real3 rotation, int reportEvery)

Create a PinObjectPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• ovName: The name of the ObjectVector that will be subjected of the constraints.

• translation: The target linear velocity. Components set to Unrestricted will not be con-
strained.

• rotation: The target angular velocity. Components set to Unrestricted will not be constrained.

• reportEvery: Send forces and torques stats to the postprocess side every this number of time
steps.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

239

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void beforeIntegration(cudaStream_t stream)
hook before integrating the particle vectors but after the forces are computed

void afterIntegration(cudaStream_t stream)
hook after the ObjectVector objects are integrated but before redistribution and bounce back

void serializeAndSend(cudaStream_t stream)
Pack and send data to the postprocess rank.

Happens between beforeForces() and beforeIntegration().

Note This may happens while computing the forces.

void handshake()
Used to communicate initial information between a SimulationPlugin and a PostprocessPlugin.

Does not do anything by default.

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

Public Static Attributes

constexpr real Unrestricted = std::numeric_limits<real>::infinity()
Special value reserved to represent unrestricted components.

class PinRodExtremityPlugin : public mirheo::SimulationPlugin
Add alignment force on a rod segment.

Public Functions

PinRodExtremityPlugin(const MirState *state, std::string name, std::string rvName, int segmen-
tId, real fmagn, real3 targetDirection)

Create a PinRodExtremityPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• rvName: The name of the RodVector to which the force should be applied.

• segmentId: The segment that will be constrained.

• fmagn: The force coefficient.

• targetDirection: The target direction.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

240

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void beforeIntegration(cudaStream_t stream)
hook before integrating the particle vectors but after the forces are computed

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class TemperaturizePlugin : public mirheo::SimulationPlugin
Add or set maxwellian drawn velocities to the particles of a given ParticleVector.

Public Functions

TemperaturizePlugin(const MirState *state, std::string name, std::string pvName, real kBT, bool
keepVelocity)

Create a TemperaturizePlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvName: The name of the ParticleVector to modify.

• kBT: Target temperature.

• keepVelocity: Wether to add or reset the velocities.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void beforeForces(cudaStream_t stream)
hook before computing the forces and after the cell lists are created

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

241

class SimulationVelocityControl : public mirheo::SimulationPlugin
Apply a force in a box region to all particles.

The force is controled by a PID controller that has a target mean velocity in that same region.

Public Functions

SimulationVelocityControl(const MirState *state, std::string name, std::vector<std::string>
pvNames, real3 low, real3 high, int sampleEvery, int tuneEvery, int
dumpEvery, real3 targetVel, real Kp, real Ki, real Kd)

Create a SimulationVelocityControl object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvNames: The list of names of the ParticleVector to control.

• low: The lower coordinates of the control region.

• high: The upper coordinates of the control region.

• sampleEvery: Sample the velocity average every this number of steps.

• tuneEvery: Update the PID controller every this number of steps.

• dumpEvery: Send statistics of the PID to the postprocess plugin every this number of steps.

• targetVel: The target mean velocity in the region of interest.

• Kp: “Proportional” coefficient of the PID.

• Ki: “Integral” coefficient of the PID.

• Kd: “Derivative” coefficient of the PID.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void beforeForces(cudaStream_t stream)
hook before computing the forces and after the cell lists are created

void afterIntegration(cudaStream_t stream)
hook after the ObjectVector objects are integrated but before redistribution and bounce back

void serializeAndSend(cudaStream_t stream)
Pack and send data to the postprocess rank.

Happens between beforeForces() and beforeIntegration().

Note This may happens while computing the forces.

242

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

void checkpoint(MPI_Comm comm, const std::string &path, int checkPointId)
Save the state of the object on disk.

Parameters

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

• checkPointId: The id of the dump.

void restart(MPI_Comm comm, const std::string &path)
Load the state of the object from the disk.

Parameters

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

class PostprocessVelocityControl : public mirheo::PostprocessPlugin
Postprocess side of SimulationVelocityControl.

Receives and dump the PID stats to a csv file.

Public Functions

PostprocessVelocityControl(std::string name, std::string filename)
Create a SimulationVelocityControl object.

Parameters

• name: The name of the plugin.

• filename: The csv file to which the statistics will be dumped.

void deserialize()
Perform the action implemented by the plugin using the data received from the SimulationPlugin.

void checkpoint(MPI_Comm comm, const std::string &path, int checkPointId)
Save the state of the object on disk.

Parameters

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

• checkPointId: The id of the dump.

void restart(MPI_Comm comm, const std::string &path)
Load the state of the object from the disk.

243

Parameters

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

class VelocityInletPlugin : public mirheo::SimulationPlugin
Add particles to a given ParticleVector.

The particles are injected on a given surface at a given influx rate.

Public Types

using ImplicitSurfaceFunc = std::function<real(real3)>
Representation of a surface from a scalar field.

using VelocityFieldFunc = std::function<real3(real3)>
Velocity field used to describe the inflow.

Public Functions

VelocityInletPlugin(const MirState *state, std::string name, std::string pvName, ImplicitSur-
faceFunc implicitSurface, VelocityFieldFunc velocityField, real3 resolution,
real numberDensity, real kBT)

Create a VelocityInletPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvName: The name of the ParticleVector to add the particles to.

• implicitSurface: The scalar field that has the desired surface as zero level set.

• velocityField: The inflow velocity. Only relevant on the surface.

• resolution: Grid size used to sample the fields.

• numberDensity: The target number density of injection.

• kBT: The temperature of the injected particles.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void beforeCellLists(cudaStream_t stream)
hook before building the cell lists

244

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

class WallRepulsionPlugin : public mirheo::SimulationPlugin
Add a force that pushes particles away from the wall surfaces.

The magnitude of the force decreases linearly down to zero at a given distance h. Furthermore, the force can be
capped.

Public Functions

WallRepulsionPlugin(const MirState *state, std::string name, std::string pvName, std::string
wallName, real C, real h, real maxForce)

Create a WallRepulsionPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• pvName: The name of the ParticleVector that will be subject to the force.

• wallName: The name of the Wall.

• C: Force coefficient.

• h: Force maximum distance.

• maxForce: Maximum force magnitude.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void beforeIntegration(cudaStream_t stream)
hook before integrating the particle vectors but after the forces are computed

bool needPostproc()

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

245

Debugging plugins

class ParticleCheckerPlugin : public mirheo::SimulationPlugin
Check the validity of all ParticleVector in the simulation:

• Check that the positions are within reasonable bounds.

• Check that the velocities are within reasonable bounds.

• Check that forces do not contain NaN or Inf values.

If either of the above is not satisfied, the plugin will make the code die with an informative error.

Public Types

enum Info
Encode error type if there is any.

Values:

Ok

Out

Nan

Public Functions

ParticleCheckerPlugin(const MirState *state, std::string name, int checkEvery)
Create a ParticleCheckerPlugin object.

Parameters

• state: The global state of the simulation.

• name: The name of the plugin.

• checkEvery: Will check the states of particles every this number of steps.

void setup(Simulation *simulation, const MPI_Comm &comm, const MPI_Comm &interComm)
setup the internal state of the SimulationPlugin.

This method must be called before any of the hooks of the plugin. This is the place to fetch reference to
objects held by the simulation.

Parameters

• simulation: The simulation to which the plugin is registered.

• comm: Contains all simulation ranks

• interComm: used to communicate with the postprocess ranks

void beforeIntegration(cudaStream_t stream)
hook before integrating the particle vectors but after the forces are computed

void afterIntegration(cudaStream_t stream)
hook after the ObjectVector objects are integrated but before redistribution and bounce back

bool needPostproc()

246

Return true if this plugin needs a postprocess side; false otherwise.

Note The plugin can have a postprocess side but not need it.

struct Status
Helper to encode problematic particles.

Public Members

int id
The Index of the potential problematic particle.

Info info
What is problematic.

Utils

Common helper classes and functions used by plugins.

template <typename ControlType>
class PidControl

PID controller class.

Template Parameters

• ControlType: The Datatype of the scalar to control.

Public Functions

PidControl(ControlType initError, real Kp, real Ki, real Kd)
Initialize the PID.

Parameters

• initError: The initial difference between the current state and the target.

• Kp: The proportional coefficient.

• Ki: The integral coefficient.

• Kd: The derivative coefficient.

ControlType update(ControlType error)
Update the internal state of the PID controller.

Return The control variable value.

Parameters

• error: The difference between the current state and the target.

247

Friends

std::ofstream &operator<<(std::ofstream &stream, const PidControl<ControlType> &pid)
Serialize a controller into a stream.

Return The stream.

Parameters

• stream: The stream that will contain the serialized data.

• pid: The current state to serialize.

std::ifstream &operator>>(std::ifstream &stream, PidControl<ControlType> &pid)
Deserialize a controller from a stream.

Return The stream.

Parameters

• stream: The stream that contains the serialized data.

• pid: The deserialized state.

void mirheo::writeXYZ(MPI_Comm comm, std::string fname, const real4 *positions, int np)
Dump positions to a file in xyz format using MPI IO.

Parameters

• comm: The MPI communicator.

• fname: The name of the target file.

• positions: Array of positions xyz_.

• np: Local number of particles.

bool mirheo::isTimeEvery(const MirState *state, int dumpEvery)
Check if a dump should occur at the current time step.

Return true if the current step is a dump time; false otherwise.

Parameters

• state: The current state of the simulation.

• dumpEvery: The number of steps between two dumps.

MirState::StepType mirheo::getTimeStamp(const MirState *state, int dumpEvery)
Get the dump stamp from current time and dump frequency.

Return The dump stamp.

Parameters

• state: The current state of the simulation.

• dumpEvery: The number of steps between two dumps.

248

class SimpleSerializer
Helper class To serialize and deserialize data.

This is used to communicate data between simulation and postprocess plugins.

Only POD types and std::vectors/HostBuffers/PinnedBuffers of POD and std::strings are supported.

Public Static Functions

static int totSize()

Return The default total size of one element.

template <typename Arg>
static int totSize(const Arg &arg)

The total size of one element.

Return The size in bytes of the element.

Template Parameters

• Arg: The type of the element

Parameters

• arg: The element instance.

template <typename Arg, typename... OthArgs>
static int totSize(const Arg &arg, const OthArgs&... othArgs)

The total size of one element.

Return The size in bytes of all elements.

Template Parameters

• Arg: The type of the element

• OthArgs: The types of the element other elements

Parameters

• arg: The element instance.

• othArgs: The other element instances.

template <typename... Args>
static void serialize(std::vector<char> &buf, const Args&... args)

Serialize multiple elements into a buffer.

The buffer will be allocated to the correct size.

Template Parameters

• Args: The types the elements to serialize.

Parameters

• args: The elements to serialize.

• buf: The buffer that will contain the serialized data.

template <typename... Args>

249

static void deserialize(const std::vector<char> &buf, Args&... args)
Deserialize multiple elements from a buffer.

Template Parameters

• Args: The types the elements to deserialize.

Parameters

• args: The deserialized elements.

• buf: The buffer that contains the serialized data.

template <typename... Args>
static void serialize(char *to, const Args&... args)

Serialize multiple elements into a buffer.

The buffer will NOT be allocated to the correct size.

Template Parameters

• Args: The types the elements to serialize.

Parameters

• args: The elements to serialize.

• to: The buffer that will contain the serialized data. Must be sufficiently large.

template <typename... Args>
static void deserialize(const char *from, Args&... args)

Deserialize multiple elements from a buffer.

Template Parameters

• Args: The types the elements to deserialize.

Parameters

• args: The deserialized elements.

• from: The buffer that contains the serialized data.

18.20 Postproc

class Postprocess : mirheo::MirObject
Manage post processing tasks (see Plugin) related to a Simulation.

There must be exactly one Postprocess rank per Simulation rank or no Postprocess rank at all. All
Plugin objects must be registered and set before calling init() and run(). This can be instantiated on ranks that
have no access to GPUs.

The run() method consists in waiting for messages incoming from the simulation ranks and execute the regis-
tered plugins functions with that data.

Public Functions

Postprocess(MPI_Comm &comm, MPI_Comm &interComm, const CheckpointInfo &check-
pointInfo)

Construct a Postprocess object.

250

Parameters

• comm: a communicator that holds all postprocessing ranks.

• interComm: An inter communicator to communicate with the Simulation ranks.

• checkpointInfo: Checkpoint configuratoin.

void registerPlugin(std::shared_ptr<PostprocessPlugin> plugin, int tag)
Register a plugin to this object.

Note The SimulationPlugin counterpart of the registered PostprocessPlugin must be registered on the
simulation side.

Parameters

• plugin: The plugin to register

• tag: a tag that is unique for each registered plugin

void deregisterPlugin(PostprocessPlugin *plugin)
Deregister a postprocess plugin.

Note The SimulationPlugin counterpart of the deregistered PostprocessPlugin must also be deregistered.
An exception is thrown if the plugin is not found.

Parameters

• plugin: The plugin to deregister

void init()
Setup all registered plugins. Must be called before run()

void run()
Start the postprocess. Will run until a termination notification is sent by the simulation.

void restart(const std::string &folder)
Restore the state from checkpoint information.

Parameters

• folder: The path containing the checkpoint files

void checkpoint(int checkpointId)
Dump the state of all postprocess plugins to the checkpoint folder.

Parameters

• checkpointId: The index of the dump, used to name the files.

18.21 Packers

Packers are used to store data of a set of registered channels from a mirheo::DataManager into a single buffer
and vice-versa. They are used to redistribute and exchange data accross neighbouring ranks efficiently. This allows to
send single MPI messages instead of one message per channel.

251

Generic Packer

This is the base packer class. All packers contain generic packers that are used to pack different kind of data (such as
particle or object data).

struct GenericPackerHandler
A device-friendly structure that is used to pack and unpack multiple channels into a single buffer.

Additionally to being packed and unpacked, the data can be shifted. This facilitate the exchange and redistribute
operations.

The packed channels are structured in a single buffer containing:

1. The first channel data

2. padding

3. The second channel data

4. padding

5. . . .

Hence, the number of elements must be known in advance before packing. This is generally not a limitation, as
memory must be allocated before packing.

Subclassed by mirheo::GenericPacker

Public Functions

size_t pack(int srcId, int dstId, char *dstBuffer, int numElements) const
Fetch one datum from the registered channels and pack it into a buffer.

Return The size (in bytes) taken by the packed data (numElements elements)

Parameters

• srcId: Index of the datum to fetch from registered channel space (in number of elements).

• dstId: Index of the datum to store in dstBuffer space (in number of elements).

• dstBuffer: Destination buffer

• numElements: Total number of elements that will be packed in the buffer.

size_t packShift(int srcId, int dstId, char *dstBuffer, int numElements, real3 shift) const
Fetch one datum from the registered channels, shift it (if applicable) and pack it into the buffer.

Only channels with active shift will be shifted.

Return The size (in bytes) taken by the packed data (numElements elements)

Parameters

• srcId: Index of the datum to fetch from registered channel space (in number of elements).

• dstId: Index of the datum to store in dstBuffer space (in number of elements).

• dstBuffer: Destination buffer

• numElements: Total number of elements that will be packed in the buffer.

• shift: The coordinate shift

252

size_t unpack(int srcId, int dstId, const char *srcBuffer, int numElements) const
Unpack one datum from the buffer and store it in the registered channels.

Return The size (in bytes) taken by the packed data (numElements elements)

Parameters

• srcId: Index of the datum to fetch from the buffer (in number of elements).

• dstId: Index of the datum to store in the registered channels (in number of elements).

• srcBuffer: Source buffer that contains packed data.

• numElements: Total number of elements that are packed in the buffer.

size_t unpackAtomicAddNonZero(int srcId, int dstId, const char *srcBuffer, int numElements)
const

Unpack one datum from the buffer and add it to the registered channels atomically.

Return The size (in bytes) taken by the packed data (numElements elements)

Parameters

• srcId: Index of the datum to fetch from the buffer (in number of elements).

• dstId: Index of the datum to add to the registered channels (in number of elements).

• srcBuffer: Source buffer that contains packed data.

• numElements: Total number of elements that are packed in the buffer.

size_t unpackShift(int srcId, int dstId, const char *srcBuffer, int numElements, real3 shift) const
Unpack and shift one datum from the buffer and store it in the registered channels.

Return The size (in bytes) taken by the packed data (numElements elements)

Parameters

• srcId: Index of the datum to fetch from the buffer (in number of elements).

• dstId: Index of the datum to store into the registered channels (in number of elements).

• srcBuffer: Source buffer that contains packed data.

• numElements: Total number of elements that are packed in the buffer.

• shift: The coordinate shift

void copyTo(GenericPackerHandler &dst, int srcId, int dstId) const
Copy one datum from the registered channels to the registered channels of another GenericPackerHandler.

Parameters

• dst: The other GenericPackerHandler that will receive the new datum.

• srcId: Index of the datum to fetch from the registered channels (in number of elements).

• dstId: Index of the datum to store into the dst registered channels (in number of elements).

253

size_t getSizeBytes(int numElements) const
Get the size (in bytes) of the buffer that can hold the packed data of numElements elements from all
registered channels.

This must be used to allocate the buffer size. Because of padding, the size is not simply the sum of sizes
of all elements.

Return The size (in bytes) of the buffer.

Parameters

• numElements: The number of elements that the buffer must contain once packed.

Public Static Attributes

constexpr size_t alignment = getPaddedSize<char>(1)
Alignment sufficient for all types used in channels.

Useful for external codes that operate with Mirheo’s packing functions.

class GenericPacker : mirheo::GenericPackerHandler
This class is used to construct GenericPackerHandler, to be passed to the device.

Public Functions

void updateChannels(DataManager &dataManager, PackPredicate &predicate, cudaStream_t
stream)

Register all channels of a DataManager satisfying a predicate.

All previously registered channels will be removed before adding those described above.

Parameters

• dataManager: The object that contains the channels to register

• predicate: The filter (white list) that is used to select the channels to register, based on their
description and names

• stream: The stream used to transfer the data on the device

GenericPackerHandler &handler()
Get a handler that can be used on the device.

size_t getSizeBytes(int numElements) const
see GenericPackerHandler::getSizeBytes().

Particles Packer

struct ParticlePackerHandler
A packer specific to particle data only.

The user can use the internal generic packer directly.

Subclassed by mirheo::ObjectPackerHandler

254

Public Functions

size_t getSizeBytes(int numElements) const
Get the reuired size (in bytes) of the buffer to hold the packed data.

Public Members

GenericPackerHandler particles
The packer responsible for the particles.

class ParticlePacker
Helper class to construct a ParticlePackerHandler.

Subclassed by mirheo::ObjectPacker

Public Functions

ParticlePacker(PackPredicate predicate)
Construct a ParticlePacker.

Parameters

• predicate: The channel filter that will be used to select the channels to be registered.

virtual void update(LocalParticleVector *lpv, cudaStream_t stream)
Register the channels of a LocalParticleVector that meet the predicate requirements.

Parameters

• lpv: The LocalParticleVector that holds the channels to be registered.

• stream: The stream used to transfer the channels information to the device.

ParticlePackerHandler handler()
get a handler usable on device

virtual size_t getSizeBytes(int numElements) const
Get the reuired size (in bytes) of the buffer to hold all the packed data.

Objects Packer

struct ObjectPackerHandler : public mirheo::ParticlePackerHandler
A packer specific to objects.

Will store both particle and object data into a single buffer.

Subclassed by mirheo::RodPackerHandler

Public Functions

size_t getSizeBytes(int numElements) const
Get the reuired size (in bytes) of the buffer to hold the packed data.

255

__device__ size_t blockPack(int numElements, char *buffer, int srcObjId, int dstObjId) const
Fetch a full object from the registered channels and pack it into the buffer.

This method must be called by one CUDA block per object.

Return The size (in bytes) taken by the packed data (numElements objects). Only relevant for thread with
Id 0.

Parameters

• numElements: Number of objects that will be packed in the buffer.

• buffer: Destination buffer that will hold the packed object

• srcObjId: The index of the object to fetch from registered channels

• dstObjId: The index of the object to store into the buffer

__device__ size_t blockPackShift(int numElements, char *buffer, int srcObjId, int dstObjId, real3
shift) const

Fetch a full object from the registered channels, shift it and pack it into the buffer.

This method must be called by one CUDA block per object.

Return The size (in bytes) taken by the packed data (numElements objects). Only relevant for thread with
Id 0.

Parameters

• numElements: Number of objects that will be packed in the buffer.

• buffer: Destination buffer that will hold the packed object

• srcObjId: The index of the object to fetch from registered channels

• dstObjId: The index of the object to store into the buffer

• shift: The coordnate shift

__device__ size_t blockUnpack(int numElements, const char *buffer, int srcObjId, int dstObjId)
const

Unpack a full object from the buffer and store it into the registered channels.

This method must be called by one CUDA block per object.

Return The size (in bytes) taken by the packed data (numElements objects). Only relevant for thread with
Id 0.

Parameters

• numElements: Number of objects that will be packed in the buffer.

• buffer: Buffer that holds the packed object

• srcObjId: The index of the object to fetch from the buffer

• dstObjId: The index of the object to store into the registered channels

__device__ size_t blockUnpackAddNonZero(int numElements, const char *buffer, int srcObjId,
int dstObjId) const

Unpack a full object from the buffer and add it to the registered channels.

This method must be called by one CUDA block per object.

Return The size (in bytes) taken by the packed data (numElements objects). Only relevant for thread with
Id 0.

Parameters

256

• numElements: Number of objects that will be packed in the buffer.

• buffer: Buffer that holds the packed object

• srcObjId: The index of the object to fetch from the buffer

• dstObjId: The index of the object to store into the registered channels

__device__ size_t blockUnpackShift(int numElements, const char *buffer, int srcObjId, int dstO-
bjId, real3 shift) const

Unpack a full object from the buffer, shift it and store it into the registered channels.

This method must be called by one CUDA block per object.

Return The size (in bytes) taken by the packed data (numElements objects). Only relevant for thread with
Id 0.

Parameters

• numElements: Number of objects that will be packed in the buffer.

• buffer: Buffer that holds the packed object

• srcObjId: The index of the object to fetch from the buffer

• dstObjId: The index of the object to store into the registered channels

• shift: Coordinates shift

__device__ void blockCopyParticlesTo(ParticlePackerHandler &dst, int srcObjId, int dstPartId-
Offset) const

Copy the particle data of a full object from registered channels into the registered channels of a Parti-
clePackerHandler.

This method must be called by one CUDA block per object.

Parameters

• dst: The destination ParticlePackerHandler

• srcObjId: The index of the object to fetch from the registered channels

• dstPartIdOffset: The index of the first particle in the destination ParticlePackerHandler

__device__ void blockCopyTo(ObjectPackerHandler &dst, int srcObjId, int dstObjId) const
Copy a full object from registered channels into the registered channels of a ObjectPackerHandler.

This method must be called by one CUDA block per object.

Parameters

• dst: The destination ObjectPackerHandler

• srcObjId: The index of the object to fetch from the registered channels

• dstObjId: The index of the object to store in the destination ObjectPackerHandler

Public Members

int objSize
number of particles per object

GenericPackerHandler objects
packer responsible for the object data

257

class ObjectPacker : public mirheo::ParticlePacker
Helper class to construct a ObjectPackerHandler.

Subclassed by mirheo::RodPacker

Public Functions

ObjectPacker(PackPredicate predicate)
Construct a ObjectPacker.

Parameters

• predicate: The channel filter that will be used to select the channels to be registered.

void update(LocalParticleVector *lpv, cudaStream_t stream)
Register the channels of a LocalParticleVector that meet the predicate requirements.

Parameters

• lpv: The LocalParticleVector that holds the channels to be registered.

• stream: The stream used to transfer the channels information to the device.

ObjectPackerHandler handler()
get a handler usable on device

size_t getSizeBytes(int numElements) const
Get the reuired size (in bytes) of the buffer to hold all the packed data.

Rods Packer

struct RodPackerHandler : public mirheo::ObjectPackerHandler
A packer specific to rods.

Will store particle, object and bisegment data into a single buffer.

Public Functions

size_t getSizeBytes(int numElements) const
Get the reuired size (in bytes) of the buffer to hold the packed data.

__device__ size_t blockPack(int numElements, char *buffer, int srcObjId, int dstObjId) const
Fetch a full rod from the registered channels and pack it into the buffer.

This method must be called by one CUDA block per object.

Return The size (in bytes) taken by the packed data (numElements rods). Only relevant for thread with
Id 0.

Parameters

• numElements: Number of rods that will be packed in the buffer.

• buffer: Destination buffer that will hold the packed rod

• srcObjId: The index of the rod to fetch from registered channels

258

• dstObjId: The index of the rod to store into the buffer

__device__ size_t blockPackShift(int numElements, char *buffer, int srcObjId, int dstObjId, real3
shift) const

Fetch a full rod from the registered channels, shift it and pack it into the buffer.

This method must be called by one CUDA block per object.

Return The size (in bytes) taken by the packed data (numElements rods). Only relevant for thread with
Id 0.

Parameters

• numElements: Number of rods that will be packed in the buffer.

• buffer: Destination buffer that will hold the packed rod

• srcObjId: The index of the rod to fetch from registered channels

• dstObjId: The index of the rod to store into the buffer

• shift: The coordnate shift

__device__ size_t blockUnpack(int numElements, const char *buffer, int srcObjId, int dstObjId)
const

Unpack a full rod from the buffer and store it into the registered channels.

This method must be called by one CUDA block per object.

Return The size (in bytes) taken by the packed data (numElements objects). Only relevant for thread with
Id 0.

Parameters

• numElements: Number of rods that will be packed in the buffer.

• buffer: Buffer that holds the packed rod

• srcObjId: The index of the rod to fetch from the buffer

• dstObjId: The index of the rod to store into the registered channels

__device__ size_t blockUnpackAddNonZero(int numElements, const char *buffer, int srcObjId,
int dstObjId) const

Unpack a full rod from the buffer and add it into the registered channels.

This method must be called by one CUDA block per object.

Return The size (in bytes) taken by the packed data (numElements objects). Only relevant for thread with
Id 0.

Parameters

• numElements: Number of rods that will be packed in the buffer.

• buffer: Buffer that holds the packed rod

• srcObjId: The index of the rod to fetch from the buffer

• dstObjId: The index of the rod to store into the registered channels

Public Members

int nBisegments
number of bisegment per rod

259

GenericPackerHandler bisegments
packer responsible for the bisegment data

class RodPacker : public mirheo::ObjectPacker
Helper class to construct a RodPackerHandler.

Public Functions

RodPacker(PackPredicate predicate)
Construct a RodPacker.

Parameters

• predicate: The channel filter that will be used to select the channels to be registered.

void update(LocalParticleVector *lpv, cudaStream_t stream)
Register the channels of a LocalParticleVector that meet the predicate requirements.

Parameters

• lpv: The LocalParticleVector that holds the channels to be registered.

• stream: The stream used to transfer the channels information to the device.

RodPackerHandler handler()
get a handler usable on device

size_t getSizeBytes(int numElements) const
Get the reuired size (in bytes) of the buffer to hold all the packed data.

18.22 Particle Vectors

See also the user interface.

Particle Vectors

class ParticleVector : public mirheo::MirSimulationObject
Base particles container.

Holds two LocalParticleVector: local and halo. The local one contains the data present in the current subdomain.
The halo one is used to exchange particle data with the neighboring ranks.

By default, contains positions, velocities, forces and global ids.

Subclassed by mirheo::ObjectVector

Unnamed Group

void setCoordinates_vector(const std::vector<real3> &coordinates)
Python getters / setters Use default blocking stream.

260

Public Functions

ParticleVector(const MirState *state, const std::string &name, real mass, int n = 0)
Construct a ParticleVector.

Parameters

• state: The simulation state

• name: Name of the pv

• mass: Mass of one particle

• n: Number of particles

LocalParticleVector *local()
get the local LocalParticleVector

LocalParticleVector *halo()
get the halo LocalParticleVector

LocalParticleVector *get(ParticleVectorLocality locality)
get the LocalParticleVector corresponding to a given locality

Parameters

• locality: local or halo

const LocalParticleVector *local() const
get the local LocalParticleVector

const LocalParticleVector *halo() const
get the halo LocalParticleVector

void checkpoint(MPI_Comm comm, const std::string &path, int checkPointId)
Save the state of the object on disk.

Parameters

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

• checkPointId: The id of the dump.

void restart(MPI_Comm comm, const std::string &path)
Load the state of the object from the disk.

Parameters

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

template <typename T>
void requireDataPerParticle(const std::string &name, DataManager::PersistenceMode

persistence, DataManager::ShiftMode shift = DataMan-
ager::ShiftMode::None)

Add a new channel to hold additional data per particle.

261

Template Parameters

• T: The type of data to add

Parameters

• name: channel name

• persistence: If the data should stich to the particles or not when exchanged

• shift: If the data needs to be shifted when exchanged

real getMassPerParticle() const
get the particle mass

Public Members

bool haloValid = {false}
true if the halo is up to date

bool redistValid = {false}
true if the particles are redistributed

int cellListStamp = {0}
stamp that keep track if the cell list is up to date

class ObjectVector : public mirheo::ParticleVector
Base objects container.

Holds two LocalObjectVector: local and halo.

Subclassed by mirheo::ChainVector, mirheo::MembraneVector, mirheo::RigidObjectVector,
mirheo::RodVector

Public Functions

ObjectVector(const MirState *state, const std::string &name, real mass, int objSize, int nObjects
= 0)

Construct a ObjectVector.

Parameters

• state: The simulation state

• name: Name of the pv

• mass: Mass of one particle

• objSize: Number of particles per object

• nObjects: Number of objects

void findExtentAndCOM(cudaStream_t stream, ParticleVectorLocality locality)
Compute Extents and center of mass of each object in the given LocalObjectVector.

Parameters

• stream: The stream to execute the kernel on.

• locality: Specify which LocalObjectVector to compute the data

262

LocalObjectVector *local()
get local LocalObjectVector

LocalObjectVector *halo()
get halo LocalObjectVector

LocalObjectVector *get(ParticleVectorLocality locality)
get LocalObjectVector from locality

void checkpoint(MPI_Comm comm, const std::string &path, int checkPointId)
Save the state of the object on disk.

Parameters

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

• checkPointId: The id of the dump.

void restart(MPI_Comm comm, const std::string &path)
Load the state of the object from the disk.

Parameters

• comm: MPI communicator to perform the I/O.

• path: The directory path to store the object state.

template <typename T>
void requireDataPerObject(const std::string &name, DataManager::PersistenceMode

persistence, DataManager::ShiftMode shift = DataMan-
ager::ShiftMode::None)

Add a new channel to hold additional data per object.

Template Parameters

• T: The type of data to add

Parameters

• name: channel name

• persistence: If the data should stich to the objects or not when exchanging

• shift: If the data needs to be shifted when exchanged

int getObjectSize() const
get number of particles per object

Public Members

std::shared_ptr<Mesh> mesh
Triangle mesh that can be used to represent the object surface.

class RigidObjectVector : public mirheo::ObjectVector
Rigid objects container.

Holds two LocalRigidObjectVector: local and halo.

Subclassed by mirheo::RigidShapedObjectVector< Shape >

263

Public Functions

RigidObjectVector(const MirState *state, const std::string &name, real partMass, real3 J,
const int objSize, std::shared_ptr<Mesh> mesh, const int nObjects = 0)

Construct a RigidObjectVector.

Parameters

• state: The simulation state

• name: Name of the pv

• partMass: Mass of one frozen particle

• J: Diagonal entries of the inertia tensor, which must be diagonal.

• objSize: Number of particles per object

• mesh: Mesh representing the surface of the object.

• nObjects: Number of objects

LocalRigidObjectVector *local()
get local LocalRigidObjectVector

LocalRigidObjectVector *halo()
get halo LocalRigidObjectVector

LocalRigidObjectVector *get(ParticleVectorLocality locality)
get LocalRigidObjectVector from locality

real3 getInertialTensor() const
get diagonal entries of the inertia tensor

Public Members

PinnedBuffer<real4> initialPositions
Coordinates of the frozen particles in the frame of reference of the object.

template <class Shape>
class RigidShapedObjectVector : public mirheo::RigidObjectVector

RigidObjectVector with analytic shape instead of triangle mesh.

Template Parameters

• Shape: The analytic shape that represents the object surface in its frame of reference

Public Functions

RigidShapedObjectVector(const MirState *state, const std::string &name, real mass, int ob-
jSize, Shape shape, int nObjects = 0)

Construct a RigidShapedObjectVector.

Parameters

• state: The simulation state

• name: Name of the pv

264

• mass: Mass of one frozen particle

• objSize: Number of particles per object

• shape: The shape that represents the surface of the object

• nObjects: Number of objects

RigidShapedObjectVector(const MirState *state, const std::string &name, real mass, int ob-
jSize, Shape shape, std::shared_ptr<Mesh> mesh, int nObjects = 0)

Construct a RigidShapedObjectVector.

Note: The mesh is used only for visualization purpose

Parameters

• state: The simulation state

• name: Name of the pv

• mass: Mass of one frozen particle

• objSize: Number of particles per object

• shape: The shape that represents the surface of the object

• mesh: The mesh that represents the surface, should not used in the simulation.

• nObjects: Number of objects

const Shape &getShape() const
get the handler that represent the shape of the objects

class RodVector : public mirheo::ObjectVector
Rod objects container.

Holds two LocalRodVector: local and halo.

Public Functions

RodVector(const MirState *state, const std::string &name, real mass, int nSegments, int nObjects
= 0)

Construct a ObjectVector.

Parameters

• state: The simulation state

• name: Name of the pv

• mass: Mass of one particle

• nSegments: Number of segments per rod

• nObjects: Number of rods

LocalRodVector *local()
get local LocalRodVector

265

LocalRodVector *halo()
get halo LocalRodVector

LocalRodVector *get(ParticleVectorLocality locality)
get LocalRodVector from locality

template <typename T>
void requireDataPerBisegment(const std::string &name, DataManager::PersistenceMode

persistence, DataManager::ShiftMode shift = DataMan-
ager::ShiftMode::None)

Add a new channel to hold additional data per bisegment.

Template Parameters

• T: The type of data to add

Parameters

• name: channel name

• persistence: If the data should stich to the object or not when exchanging

• shift: If the data needs to be shifted when exchanged

class MembraneVector : public mirheo::ObjectVector
Represent a set of membranes.

Each membrane is composed of the same connectivity (stored in mesh) and number of vertices. The particles
data correspond to the vertices of the membranes.

Public Functions

MembraneVector(const MirState *state, const std::string &name, real mass,
std::shared_ptr<MembraneMesh> mptr, int nObjects = 0)

Construct a MembraneVector.

Parameters

• state: The simulation state

• name: Name of the pv

• mass: Mass of one particle

• mptr: Triangle mesh which stores the connectivity of a single membrane

• nObjects: Number of objects

Local Particle Vectors

class LocalParticleVector
Particles container.

This is used to represent local or halo particles in ParticleVector.

Subclassed by mirheo::LocalObjectVector

266

Public Functions

LocalParticleVector(ParticleVector *pv, int np = 0)
Construct a LocalParticleVector.

Parameters

• pv: Pointer to the parent ParticleVector.

• np: Number of particles.

int size() const
return the number of particles

virtual void resize(int n, cudaStream_t stream)
resize the container, preserving the data.

Parameters

• n: new number of particles

• stream: that is used to copy data

virtual void resize_anew(int n)
resize the container, without preserving the data.

Parameters

• n: new number of particles

PinnedBuffer<Force> &forces()
get forces container reference

PinnedBuffer<real4> &positions()
get positions container reference

PinnedBuffer<real4> &velocities()
get velocities container reference

virtual void computeGlobalIds(MPI_Comm comm, cudaStream_t stream)
Set a unique Id for each particle in the simulation.

The ids are stored in the channel ChannelNames::globalIds.

Parameters

• comm: MPI communicator of the simulation

• stream: Stream used to transfer data between host and device

ParticleVector *parent()
get parent ParticleVector

const ParticleVector *parent() const
get parent ParticleVector

267

Public Members

DataManager dataPerParticle
Contains all particle channels.

Friends

void swap(LocalParticleVector&, LocalParticleVector&)
swap two LocalParticleVector

class LocalObjectVector : public mirheo::LocalParticleVector
Objects container.

This is used to represent local or halo objects in ObjectVector. An object is a chunk of particles, each chunk
with the same number of particles within an ObjectVector. Additionally, data can be attached to each of those
chunks.

Subclassed by mirheo::LocalRigidObjectVector, mirheo::LocalRodVector

Public Functions

LocalObjectVector(ParticleVector *pv, int objSize, int nObjects = 0)
Construct a LocalParticleVector.

Parameters

• pv: Parent ObjectVector

• objSize: Number of particles per object

• nObjects: Number of objects

void resize(int n, cudaStream_t stream)
resize the container, preserving the data.

Parameters

• n: new number of particles

• stream: that is used to copy data

void resize_anew(int n)
resize the container, without preserving the data.

Parameters

• n: new number of particles

void computeGlobalIds(MPI_Comm comm, cudaStream_t stream)
Set a unique Id for each particle in the simulation.

The ids are stored in the channel ChannelNames::globalIds.

Parameters

• comm: MPI communicator of the simulation

• stream: Stream used to transfer data between host and device

268

virtual PinnedBuffer<real4> *getMeshVertices(cudaStream_t stream)
get positions of the mesh vertices

virtual PinnedBuffer<real4> *getOldMeshVertices(cudaStream_t stream)
get positions of the old mesh vertices

virtual PinnedBuffer<Force> *getMeshForces(cudaStream_t stream)
get forces on the mesh vertices

int getObjectSize() const
get number of particles per object

int getNumObjects() const
get number of objects

Public Members

DataManager dataPerObject
contains object data

Friends

void swap(LocalObjectVector&, LocalObjectVector&)
swap two LocalObjectVector

class LocalRigidObjectVector : public mirheo::LocalObjectVector
Rigid objects container.

This is used to represent local or halo objects in RigidObjectVector. A rigid object is composed of frozen
particles inside a volume that is represented by a triangle mesh. There is then two sets of particles: mesh vertices
and frozen particles. The frozen particles are stored in the particle data manager, while the mesh particles are
stored in additional buffers.

Additionally, each rigid object has a RigidMotion datum associated that fully describes its state.

Public Functions

LocalRigidObjectVector(ParticleVector *pv, int objSize, int nObjects = 0)
Construct a LocalRigidObjectVector.

Parameters

• pv: Parent RigidObjectVector

• objSize: Number of frozen particles per object

• nObjects: Number of objects

PinnedBuffer<real4> *getMeshVertices(cudaStream_t stream)
get positions of the mesh vertices

PinnedBuffer<real4> *getOldMeshVertices(cudaStream_t stream)
get positions of the old mesh vertices

PinnedBuffer<Force> *getMeshForces(cudaStream_t stream)
get forces on the mesh vertices

269

void clearRigidForces(cudaStream_t stream)
set forces in rigid motions to zero

class LocalRodVector : public mirheo::LocalObjectVector
Rod container.

This is used to represent local or halo rods in RodVector. A rod is a chunk of particles connected implicitly in
segments with additional 4 particles per edge. The number of particles per rod is then 5*n + 1 if n is the number
of segments. Each object (called a rod) within a LocalRodVector has the same number of particles. Additionally
to particle and object, data can be attached to each bisegment.

Public Functions

LocalRodVector(ParticleVector *pv, int objSize, int nObjects = 0)
Construct a LocalRodVector.

Parameters

• pv: Parent RodVector

• objSize: Number of particles per object

• nObjects: Number of objects

void resize(int n, cudaStream_t stream)
resize the container, preserving the data.

Parameters

• n: new number of particles

• stream: that is used to copy data

void resize_anew(int n)
resize the container, without preserving the data.

Parameters

• n: new number of particles

int getNumSegmentsPerRod() const
get the number of segment per rod

Public Members

DataManager dataPerBisegment
contains bisegment data

Views

struct PVview
GPU-compatible struct that contains particle basic data.

Contains particle positions, velocities, forces, and mass info.

Subclassed by mirheo::OVview, mirheo::PVviewWithDensities, mirheo::PVviewWithOldParticles

270

Public Types

using PVType = ParticleVector
Particle Vector compatible type.

using LPVType = LocalParticleVector
Local Particle Vector compatible type.

Public Functions

PVview(ParticleVector *pv, LocalParticleVector *lpv)
Construct a PVview .

Parameters

• pv: The ParticleVector that the view represents

• lpv: The LocalParticleVector that the view represents

real4 readPosition(int id) const
fetch position from given particle index

real4 readVelocity(int id) const
fetch velocity from given particle index

void readPosition(Particle &p, int id) const
fetch position from given particle index and store it into p

void readVelocity(Particle &p, int id) const
fetch velocity from given particle index and store it into p

Particle readParticle(int id) const
fetch particle from given particle index

real4 readPositionNoCache(int id) const
fetch position from given particle index without going through the L1/L2 cache This can be useful to
reduce the cache pressure on concurrent kernels

Particle readParticleNoCache(int id) const
fetch particle from given particle index without going through the L1/L2 cache This can be useful to reduce
the cache pressure on concurrent kernels

void writePosition(int id, const real4 &r)
Store position at the given particle id.

void writeVelocity(int id, const real4 &u)
Store velocity at the given particle id.

void writeParticle(int id, const Particle &p)
Store particle at the given particle id.

Public Members

int size = {0}
number of particles

271

real4 *positions = {nullptr}
particle positions in local coordinates

real4 *velocities = {nullptr}
particle velocities

real4 *forces = {nullptr}
particle forces

real mass = {0._r}
mass of one particle

real invMass = {0._r}
1 / mass

struct PVviewWithOldParticles : public mirheo::PVview
PVview with additionally positions from previous time steps

Public Functions

PVviewWithOldParticles(ParticleVector *pv, LocalParticleVector *lpv)
Construct a PVviewWithOldParticles.

Note: if pv does not have old positions channel, this will be ignored and oldPositions will be set to nullptr.

Parameters

• pv: The ParticleVector that the view represents

• lpv: The LocalParticleVector that the view represents

real3 readOldPosition(int id) const
fetch positions at previous time step

Public Members

real4 *oldPositions = {nullptr}
particle positions from previous time steps

struct PVviewWithDensities : public mirheo::PVview
PVview with additionally densities data

Public Functions

PVviewWithDensities(ParticleVector *pv, LocalParticleVector *lpv)
Construct a PVviewWithOldParticles.

Warning: The pv must hold a density channel.

Parameters

• pv: The ParticleVector that the view represents

272

• lpv: The LocalParticleVector that the view represents

Public Members

real *densities = {nullptr}
particle densities

template <typename BasicView>
struct PVviewWithStresses : public BasicView

A View with additional stress info.

Template Parameters

• BasicView: The pv view to extend with stresses

Public Functions

PVviewWithStresses(PVType *pv, LPVType *lpv)
Construct a PVviewWithStresses.

Warning: The pv must hold a stress per particle channel.

Parameters

• pv: The ParticleVector that the view represents

• lpv: The LocalParticleVector that the view represents

Public Members

Stress *stresses = {nullptr}
stresses per particle

struct OVview : public mirheo::PVview
A PVview with additionally basic object data.

Contains object ids, object extents.

Subclassed by mirheo::OVviewWithAreaVolume, mirheo::OVviewWithNewOldVertices, mirheo::ROVview,
mirheo::RVview

Public Types

using PVType = ObjectVector
Particle Vector compatible type.

using LPVType = LocalObjectVector
Local Particle Vector compatible type.

273

Public Functions

OVview(ObjectVector *ov, LocalObjectVector *lov)
Construct a OVview .

Parameters

• ov: The ObjectVector that the view represents

• lov: The LocalObjectVector that the view represents

Public Members

int nObjects = {0}
number of objects

int objSize = {0}
number of particles per object

real objMass = {0._r}
mass of one object

real invObjMass = {0._r}
1 / objMass

COMandExtent *comAndExtents = {nullptr}
center of mass and extents of the objects

int64_t *ids = {nullptr}
global ids of objects

struct OVviewWithAreaVolume : public mirheo::OVview
A OVview with additionally area and volume information.

Subclassed by mirheo::OVviewWithJuelicherQuants

Public Functions

OVviewWithAreaVolume(ObjectVector *ov, LocalObjectVector *lov)
Construct a OVviewWithAreaVolume.

Warning: The ov must hold a areaVolumes channel.

Parameters

• ov: The ObjectVector that the view represents

• lov: The LocalObjectVector that the view represents

Public Members

real2 *area_volumes = {nullptr}
area and volume per object

struct OVviewWithJuelicherQuants : public mirheo::OVviewWithAreaVolume
A OVviewWithAreaVolume with additional curvature related quantities.

274

Public Functions

OVviewWithJuelicherQuants(ObjectVector *ov, LocalObjectVector *lov)
Construct a OVviewWithJuelicherQuants.

Warning: The ov must hold areaVolumes and lenThetaTot object channels and vertex areas, mean-
Curvatures particle channels.

Parameters

• ov: The ObjectVector that the view represents

• lov: The LocalObjectVector that the view represents

Public Members

real *vertexAreas = {nullptr}
area per vertex (defined on a triangle mesh)

real *vertexMeanCurvatures = {nullptr}
mean curvature vertex (defined on a triangle mesh)

real *lenThetaTot = {nullptr}
helper quantity to compute Juelicher bending energy

struct OVviewWithNewOldVertices : public mirheo::OVview
A OVview with additionally vertices information.

Public Functions

OVviewWithNewOldVertices(ObjectVector *ov, LocalObjectVector *lov, cudaStream_t stream)
Construct a OVviewWithNewOldVertices.

Parameters

• ov: The ObjectVector that the view represents

• lov: The LocalObjectVector that the view represents

• stream: Stream used to create mesh vertices if not already present

Public Members

real4 *vertices = {nullptr}
vertex positions

real4 *old_vertices = {nullptr}
vertex positions at previous time step

real4 *vertexForces = {nullptr}
vertex forces

int nvertices = {0}
number of vertices

275

struct ROVview : public mirheo::OVview
A OVview with additional rigid object infos.

Subclassed by mirheo::ROVviewWithOldMotion, mirheo::RSOVview< Shape >

Public Functions

ROVview(RigidObjectVector *rov, LocalRigidObjectVector *lrov)
Construct a ROVview .

Parameters

• rov: The RigidObjectVector that the view represents

• lrov: The LocalRigidObjectVector that the view represents

Public Members

RigidMotion *motions = {nullptr}
rigid object states

real3 J = {0._r, 0._r, 0._r}
diagonal entries of inertia tensor

real3 J_1 = {0._r ,0._r, 0._r}
diagonal entries of the inverse inertia tensor

struct ROVviewWithOldMotion : public mirheo::ROVview
A OVview with additional rigid object info from previous time step.

Public Functions

ROVviewWithOldMotion(RigidObjectVector *rov, LocalRigidObjectVector *lrov)
Construct a ROVview .

Warning: The rov must hold old motions channel.

Parameters

• rov: The RigidObjectVector that the view represents

• lrov: The LocalRigidObjectVector that the view represents

Public Members

RigidMotion *old_motions = {nullptr}
rigid object states at previous time step

template <class Shape>
struct RSOVview : public mirheo::ROVview

A ROVview with additional analytic shape infos.

Template Parameters

276

• Shape: the analytical shape that represents the object shape

Subclassed by mirheo::RSOVviewWithOldMotion< Shape >

Public Functions

RSOVview(RigidShapedObjectVector<Shape> *rsov, LocalRigidObjectVector *lrov)
Construct a RSOVview .

Parameters

• rsov: The RigidShapedObjectVector that the view represents

• lrov: The LocalRigidObjectVector that the view represents

Public Members

Shape shape
Represents the object shape.

template <class Shape>
struct RSOVviewWithOldMotion : public mirheo::RSOVview<Shape>

A RSOVview with additional rigid object info from previous time step.

Template Parameters

• Shape: the analytical shape that represents the object shape

Public Functions

RSOVviewWithOldMotion(RigidShapedObjectVector<Shape> *rsov, LocalRigidObjectVector
*lrov)

Construct a RSOVview .

Warning: The rov must hold old motions channel.

Parameters

• rsov: The RigidShapedObjectVector that the view represents

• lrov: The LocalRigidObjectVector that the view represents

Public Members

RigidMotion *old_motions = {nullptr}
rigid object states at previous time step

struct RVview : public mirheo::OVview
A OVview with additional rod object infos.

Subclassed by mirheo::RVviewWithOldParticles

277

Public Functions

RVview(RodVector *rv, LocalRodVector *lrv)
Construct a RVview .

Parameters

• rv: The RodVector that the view represents

• lrv: The LocalRodVector that the view represents

Public Members

int nSegments = {0}
number of segments per rod

int *states = {nullptr}
polymorphic states per bisegment

real *energies = {nullptr}
energies per bisegment

struct RVviewWithOldParticles : public mirheo::RVview
A RVview with additional particles from previous time step.

Public Functions

RVviewWithOldParticles(RodVector *rv, LocalRodVector *lrv)
Construct a RVview .

Parameters

• rv: The RodVector that the view represents

• lrv: The LocalRodVector that the view represents

Public Members

real4 *oldPositions = {nullptr}
positions o the particles at previous time step

Data Manager

This is the building block to create particle vectors.

class DataManager
Container for multiple channels on device and host.

Used by ParticleVector and ObjectVector to hold data per particle and per object correspondingly. All channels
are stored as PinnedBuffer, which allows to easily transfer the data between host and device. Channels can hold
data of types listed in VarPinnedBufferPtr variant. See ChannelDescription for the description of one channel.

278

Unnamed Group

DataManager(const DataManager &b)
copy and move constructors

Unnamed Group

ChannelDescription *getChannelDesc(const std::string &name)
Get channel from its name or nullptr if it is not found.

Unnamed Group

ChannelDescription &getChannelDescOrDie(const std::string &name)
Get channel from its name or die if it is not found.

Public Types

using NamedChannelDesc = std::pair<std::string, const ChannelDescription *>
The full description of a channel, contains its name and description.

Public Functions

void copyChannelMap(const DataManager&)
Copy channel names and their types from a given DataManager.

Does not copy data or resize buffers. New buffers are empty.

template <typename T>
void createData(const std::string &name, int size = 0)

Allocate a new channel.

This method will die if a channel with different type but same name already exists. If a channel with the
same name and same type exists, this method will not allocate a new channel.

Template Parameters

• T: datatype of the buffer element. sizeof(T) should be compatible with VarPinnedBufferPtr

Parameters

• name: buffer name

• size: resize buffer to size elements

void setPersistenceMode(const std::string &name, PersistenceMode persistence)
Set the persistence mode of the data.

This method will die if the required name does not exist.

Warning: This method can only increase the persistence. If the channel is already persistent, this
method can not set its persistent mode to None.

Parameters

279

• name: The name of the channel to modify

• persistence: Persistence mode to add to the channel.

void setShiftMode(const std::string &name, ShiftMode shift)
Set the shift mode of the data.

This method will die if the required name does not exist.

Warning: This method can only increase the shift mode. If the channel already needs shift, this
method can not set its shift mode to None.

Parameters

• name: The name of the channel to modify

• shift: Shift mode to add to the channel.

GPUcontainer *getGenericData(const std::string &name)
Get gpu buffer by name.

This method will die if the required name does not exist.

Return pointer to GPUcontainer corresponding to the given name

Parameters

• name: buffer name

template <typename T>
PinnedBuffer<T> *getData(const std::string &name)

Get buffer by name.

This method will die if the required name does not exist or if T is of the wrong type.

Return pointer to PinnedBuffer<T> corresponding to the given name

Parameters

• name: buffer name

Template Parameters

• T: type of the element of the PinnedBuffer

void *getGenericPtr(const std::string &name)
Get device buffer pointer regardless of its type.

This method will die if the required name does not exist.

Return pointer to device data held by the corresponding PinnedBuffer

Parameters

• name: buffer name

bool checkChannelExists(const std::string &name) const
true if channel with given name exists, false otherwise

const std::vector<NamedChannelDesc> &getSortedChannels() const

Return vector of channels sorted (descending) by size of their elements (and then name)

280

bool checkPersistence(const std::string &name) const

Return true if the channel is persistent

void resize(int n, cudaStream_t stream)
Resize all the channels and preserve their data.

void resize_anew(int n)
Resize all the channels without preserving the data.

Friends

void swap(DataManager &a, DataManager &b)
swap two DataManager

struct ChannelDescription
Holds information and data of a single channel.

A channel has a type, persistence mode and shift mode.

Public Functions

bool needShift() const
returns true if the channel’s data needs to be shifted when exchanged or redistributed.

Public Members

std::unique_ptr<GPUcontainer> container
The data stored in the channel. Internally stored as a PinnedBuffer.

VarPinnedBufferPtr varDataPtr
Pointer to container that holds the correct type.

PersistenceMode persistence = {PersistenceMode::None}
The persistence mode of the channel.

ShiftMode shift = {ShiftMode::None}
The shift mode of the channel.

18.23 Rigid

Rigid body representation and tools

Rigid state structure

Tools

void mirheo::rigid_operations::collectRigidForces(const ROVview &view, cudaS-
tream_t stream)

Reduce the forces contained in the particles to the force and torque variable of the RigidMotion objects.

enum mirheo::rigid_operations::ApplyTo
controls to what quantities to apply the

Values:

281

PositionsOnly

PositionsAndVelocities

void mirheo::rigid_operations::applyRigidMotion(const ROVview &view, const Pinned-
Buffer<real4> &initialPositions, ApplyTo
action, cudaStream_t stream)

Set the positions (and optionally velocities, according to the rigid motions.

Note The size of initialPositions must be the same as the object sizes described by view

Parameters

• view: The view that contains the input RigidMotion and output particles

• initialPositions: The positions of the particles in the frame of reference of the object

• action: Apply the rigid motion to positions or positions and velocities

• stream: execution stream

void mirheo::rigid_operations::clearRigidForcesFromMotions(const ROVview &view,
cudaStream_t stream)

set the force and torques of the RigidMotion objects to zero

18.24 Simulation

class Simulation : protected mirheo::MirObject
Manage and combine all MirObject objects to run a simulation.

All MirObject objects must be registered and set before calling run().

This must be instantiated only by ranks that have access to a GPU. Optionally, this class can communicate with
a Postprocess one held on a different rank. This option is used for Plugins.

Public Functions

Simulation(const MPI_Comm &cartComm, const MPI_Comm &interComm, MirState *state,
CheckpointInfo checkpointInfo, real maxObjHalfLength, bool gpuAwareMPI = false)

Construct an empty Simulation object.

Parameters

• cartComm: a cartesian communicator that holds all ranks of the simulation.

• interComm: An inter communicator to communicate with the Postprocess ranks.

• state: The global state of the simulation. Does not pass ownership.

• checkpointInfo: Configuration of checkpoint

• maxObjHalfLength: Half of the maximum length of all objects.

• gpuAwareMPI: Performance parameter that controls if communication can be performed
through RDMA.

void restart(const std::string &folder)
restore the simulation state from a folder that contains all restart files

282

void checkpoint()
Dump the whole simulation state to the checkpoint folder and advance the checkpoint ID.

void registerParticleVector(std::shared_ptr<ParticleVector> pv,
std::shared_ptr<InitialConditions> ic)

register a ParticleVector and initialize it with the gien InitialConditions.

Parameters

• pv: The ParticleVector to register

• ic: The InitialConditions that will be applied to pv when registered

void registerWall(std::shared_ptr<Wall> wall, int checkEvery = 0)
register a Wall

Parameters

• wall: The Wall to register

• checkEvery: The particles that will bounce against this wall will be checked (inside/outside
log info) every this number of time steps. 0 means no check.

void registerInteraction(std::shared_ptr<Interaction> interaction)
register an Interaction

See setInteraction().

Parameters

• interaction: the Interaction to register.

void registerIntegrator(std::shared_ptr<Integrator> integrator)
register an Integrator

See setIntegrator().

Parameters

• integrator: the Integrator to register.

void registerBouncer(std::shared_ptr<Bouncer> bouncer)
register a Bouncer

See setBouncer().

Parameters

• bouncer: the Bouncer to register.

void registerPlugin(std::shared_ptr<SimulationPlugin> plugin, int tag)
register a SimulationPlugin

Note If there is a Postprocess rank, it might need to register the corrsponding PostprocessPlugin.

Parameters

• plugin: the SimulationPlugin to register.

• tag: A unique tag per plugin, used by MPI communications. Must be different for every plugin.

283

void registerObjectBelongingChecker(std::shared_ptr<ObjectBelongingChecker> checker)
register a ObjectBelongingChecker

See applyObjectBelongingChecker()

Parameters

• checker: the ObjectBelongingChecker to register.

void deregisterIntegrator(Integrator *integrator)
deregister an Integrator

See registerIntegrator().

Parameters

• integrator: the Integrator to deregister.

void deregisterPlugin(SimulationPlugin *plugin)
deregister a SimulationPlugin

Note If there is a Postprocess rank, the corresponding PostprocessPlugin must also be deregistered.

Parameters

• plugin: the SimulationPlugin to deregister.

void setIntegrator(const std::string &integratorName, const std::string &pvName)
Assign a registered Integrator to a registered ParticleVector.

Parameters

• integratorName: Name of the registered integrator (will die if it does not exist)

• pvName: Name of the registered ParticleVector (will die if it does not exist)

void setInteraction(const std::string &interactionName, const std::string &pv1Name, const
std::string &pv2Name)

Assign two registered Interaction to two registered ParticleVector objects.

This was designed to handle PairwiseInteraction, which needs up to two ParticleVector. For self interac-
tion cases (such as MembraneInteraction), pv1Name and pv2Name must be the same.

Parameters

• interactionName: Name of the registered interaction (will die if it does not exist)

• pv1Name: Name of the first registered ParticleVector (will die if it does not exist)

• pv2Name: Name of the second registered ParticleVector (will die if it does not exist)

void setBouncer(const std::string &bouncerName, const std::string &objName, const std::string
&pvName)

Assign a registered Bouncer to registered ObjectVector and ParticleVector.

Parameters

• bouncerName: Name of the registered bouncer (will die if it does not exist)

• objName: Name of the registered ObjectVector that contains the surface to bounce on (will die
if it does not exist)

284

• pvName: Name of the registered ParticleVector to bounce (will die if it does not exist)

void setWallBounce(const std::string &wallName, const std::string &pvName, real maxi-
mumPartTravel)

Set a registered ParticleVector to bounce on a registered Wall.

Parameters

• wallName: Name of the registered wall (will die if it does not exist)

• pvName: Name of the registered ParticleVector (will die if it does not exist)

• maximumPartTravel: Performance parameter. See Wall for more information.

void setObjectBelongingChecker(const std::string &checkerName, const std::string &obj-
Name)

Associate a registered ObjectBelongingChecker to a registered ObjectVector.

Note this is required before calling applyObjectBelongingChecker()

Parameters

• checkerName: Name of the registered ObjectBelongingChecker (will die if it does not exist)

• objName: Name of the registered ObjectVector (will die if it does not exist)

void applyObjectBelongingChecker(const std::string &checkerName, const std::string
&source, const std::string &inside, const std::string
&outside, int checkEvery)

Enable a registered ObjectBelongingChecker to split particles of a registered ParticleVector.

inside or outside can take the reserved value “none”, in which case the corresponding particles will
be deleted. Furthermore, exactly one of inside and outside must be the same as source.

Parameters

• checkerName: The name of the ObjectBelongingChecker. Must be associated to an ObjectVec-
tor with setObjectBelongingChecker() (will die if it does not exist)

• source: The registered ParticleVector that must be split (will die if it does not exist)

• inside: Name of the ParticleVector that will contain the particles of source that are inside
the objects. See below for more information.

• outside: Name of the ParticleVector that will contain the particles of source that are outside
the objects. See below for more information.

• checkEvery: The particle split will be performed every this amount of time steps.

If inside or outside has the name of a ParticleVector that is not registered, this call will create an
empty ParticleVector with the given name and register it in the Simulation. Otherwise the already
registered ParticleVector will be used.

void init()
setup all the simulation tasks from the registered objects and their relation. Must be called after all the
register and set methods.

void run(MirState::StepType nsteps)
advance the system for a given number of time steps. Must be called after init()

285

void notifyPostProcess(int tag, int msg) const
Send a tagged message to the Postprocess rank.

This is useful to pass special messages, e.g. termination or checkpoint.

std::vector<ParticleVector *> getParticleVectors() const

Return a list of all ParticleVector registered objects

ParticleVector *getPVbyName(const std::string &name) const

Return ParticleVector with given name if found, nullptr otherwise

ParticleVector *getPVbyNameOrDie(const std::string &name) const

Return ParticleVector with given name if found, die otherwise

ObjectVector *getOVbyName(const std::string &name) const

Return ObjectVector with given name if found, nullptr otherwise

ObjectVector *getOVbyNameOrDie(const std::string &name) const

Return ObjectVector with given name if found, die otherwise

std::shared_ptr<ParticleVector> getSharedPVbyName(const std::string &name) const

Return ParticleVector with the given name if found, nullptr otherwise

Wall *getWallByNameOrDie(const std::string &name) const

Return Wall with the given name if found, die otherwise

CellList *gelCellList(ParticleVector *pv) const

This method will die if pv was not registered

Return the CellList associated to the given ParticleVector, nullptr if there is none

Parameters

• pv: The registered ParticleVector

void startProfiler() const
start the cuda profiler; used for nvprof

void stopProfiler() const
end the cuda profiler; used for nvprof

MPI_Comm getCartComm() const

Return the cartesian communicator of the Simulation

int3 getRank3D() const

Return the coordinates in the cartesian communicator of the current rank

int3 getNRanks3D() const

Return the dimensions of the cartesian communicator

real getCurrentDt() const

Return The current time step

real getCurrentTime() const

286

Return The current simulation time

real getMaxEffectiveCutoff() const

This takes into account the intermediate interactions, e.g. in SDPD this will corrspond to the cutoff used
for the density + the one from the SDPD kernel. Useful e.g. to decide the widh of frozen particles in walls.

Return The largest cut-off radius of all “full” force computation.

void dumpDependencyGraphToGraphML(const std::string &fname, bool current) const
dump the task dependency of the simulation in graphML format.

Parameters

• fname: The file name to dump the graph to (without extension).

• current: if true, will only dump the current tasks; otherwise, will dump all possible ones.

18.25 Task Scheduler

Becaus of the high number of tasks to execute and their complex dependencies, Mirheo uses a
mirheo::TaskScheduler that takes care of executing all these tasks on concurrent streams. The synchronization
is therefore hidden in this class.

API

class TaskScheduler
CUDA-aware task scheduler.

Manages task dependencies and run them concurrently on different CUDA streams. This is designed to be run
in a time stepping scheme, e.g. all the tasks of a single time step must be described here before calling the run()
method repetitively.

Public Types

using TaskID = int
Represents the unique id of a task.

using Function = std::function<void(cudaStream_t)>
Represents the function performed by a task. Will be executed on the given stream.

Public Functions

TaskScheduler()
Default constructor.

TaskID createTask(const std::string &label)
Create and register an empty task named label.

This method will die if a task with the given label already exists.

Return the task id associated with the new task

Parameters

• label: The name of the task

287

TaskID getTaskId(const std::string &label) const
Retrieve the task id of the task with a given label.

Return the task id if it exists, or invalidTaskId if it doesn’t

Parameters

• label: The name of the task

TaskID getTaskIdOrDie(const std::string &label)
Retrieve the task id of the task with a given label.

This method will die if no registered task has the given label

Return the task id

Parameters

• label: The name of the task

void addTask(TaskID id, Function task, int execEvery = 1)
Add a function to execute to the given task.

Multiple functions can be added in a single task. The order of execution of these functions is the order in
which they were added. This method will fail if the required task does not exist.

Parameters

• id: Task Id

• task: The function to execute

• execEvery: Execute his function every this number of calls of run().

void addDependency(TaskID id, std::vector<TaskID> before, std::vector<TaskID> after)
add dependencies around a given task

Parameters

• id: The task that must be executed before before and after after

• before: the list of tasks that must be executed after the task with id id

• after: the list of tasks that must be executed before the task with id id

void setHighPriority(TaskID id)
Set the execution of a task to high priority.

Parameters

• id: The task id

void compile()
Prepare the internal state so that the scheduler can perform execution of all tasks.

No other calls related to task creation / modification / dependencies must be performed after calling this
function.

void run()
Execute the tasks in the order required by the given dependencies and priorities.

Must be called after compile().

288

void dumpGraphToGraphML(const std::string &fname) const
Dump a representation of the tasks and their dependencies in graphML format.

Parameters

• fname: The file name to dump the graph to (without extension).

void forceExec(TaskID id, cudaStream_t stream)
Execute a given task on a given stream.

Parameters

• id: the task to execute

• stream: The stream to execute the task

Public Static Attributes

constexpr TaskID invalidTaskId = {static_cast<TaskID>(-1)}
Special task id value to represent invalid tasks.

18.26 Types

Each channel in mirheo::DataManager can have one of the types listed in the following xmacro:

MIRHEO_TYPE_TABLE__(OP, SEP)
xmacro that contains the list of type available for data channels.

Must contain POd structures that are compatible with device code.

Host variants

template <class T>
struct DataTypeWrapper

A simple structure to store a c type.

This is useful with a variant and visitor pattern.

Template Parameters

• T: The type to wrap

The mirheo::TypeDescriptor variant contains a type of mirheo::DataTypeWrapper that is in the type
list.

Device variants

The mirheo::CudaVarPtr variant contains a pointer of a type that is in the type list.

289

Utils

std::string mirheo::typeDescriptorToString(const TypeDescriptor &desc)
Convert a TypeDescriptor variant to the string that represents the type.

Return The string that correspond to the type (e.g. int gives “int”)

Parameters

• desc: The variant of DataTypeWrapper

TypeDescriptor mirheo::stringToTypeDescriptor(const std::string &str)
reverse operation of typeDescriptorToString().

This method will die if str does not correspond to any type in the type list.

Return a variant that contains the DataTypeWrapper with the correct type.

Parameters

• str: The string representation of the type (e.g. “int” for int)

18.27 Utils

FileWrapper

class FileWrapper
Wrapper for c-stype FILE with RAII.

Public Types

enum SpecialStream
Used to construct special stream handlers for cout and cerr.

Values:

Cout

Cerr

enum Status
return status when opening the files

Values:

Success

Failed

Public Functions

FileWrapper()
default constructor

FileWrapper(const std::string &fname, const std::string &mode)
Construct a FileWrapper and tries to open the file fname in mode mode.

This method will die if the file was not found

290

Parameters

• fname: The name of the file to open

• mode: The open mode, e.g. “r” for read mode (see docs of std::fopen)

FileWrapper(SpecialStream stream, bool forceFlushOnClose)
Construct a FileWrapper for console output.

Note See also open(SpecialStream, bool))

Parameters

• stream: The SpecialStream to dump to.

• forceFlushOnClose: If true, flushes to the stream when the object is closed.

FileWrapper(FileWrapper&&)
move constructor

FileWrapper &operator=(FileWrapper&&)
move assignment

Status open(const std::string &fname, const std::string &mode)
Open a file in a given mode.

Return Status::Success if the file was open succesfully, Status::Failed otherwise

Parameters

• fname: The name of the file to open

• mode: The open mode, e.g. “r” for read mode (see docs of std::fopen)

Status open(SpecialStream stream, bool forceFlushOnClose)
Set the wrapper to write to a special stream.

Return success status

Parameters

• stream: stdout or stderr

• forceFlushOnClose: If set to true, the buffer will be flushed when close() is called.

FILE *get()

Return the C-style file handler

void close()
Close the current handler.

This does not need to be called manually unless reopening a new file, since it will be called in the destructor.

If the handler was pointing to a file, the file is close. If the handler was pointing to a special stream (cout,
cerr), fflush may be called (see forceFlushOnClose parameter in open(SpecialStream, bool)) but the stream
is not closed. If the handler did not point to anything, nothing happens.

void fread(void *ptr, size_t size, size_t count)
Wrapper around std::fread. Throws an exception if reading failed.

291

Folders

A set of functions to manipulate paths and create folders.

std::string mirheo::createStrZeroPadded(long long i, int zeroPadding = 5)
Create a string representing an integer with 0 padding.

If zeroPadding is too small, this method will die. Example: createStrZeroPadded(42, 5) gives
“00042”

Return the string representation of i with padded zeros

Parameters

• i: The integer to print (must non negative)

• zeroPadding: The total number of characters

std::vector<std::string> mirheo::splitByDelim(std::string str, char delim = ’,’)
Split a string according to a delimiter character.

e.g. splitByDelim(“string_to_split”, ‘_’) -> {“string”, “to”, “split”}

Return The list of substrings (without the delimiter)

Parameters

• str: The input sequence of characters

• delim: The delimiter

std::string mirheo::makePath(std::string path)
append ‘/’ at the end of path if it doesn t have it already

Return The path with a trailing separator

Parameters

• path: The path to work with

std::string mirheo::getParentPath(std::string path)
Get the parent folder of the given filename.

If the input is a path (it ends with a ‘/’), the output is the same as the input. If the input is just a filename with no
‘/’, this function returns an empty string.

Return The parent folder.

Parameters

• path: The filename containing a path

std::string mirheo::getBaseName(std::string path)
remove the path from the given filename.

Return the filename only without any prepended folder

Parameters

• path: The filename with full relative or absolute path

std::string mirheo::joinPaths(const std::string &A, const std::string &B)
Concatenate two paths A and B.

Return A/B Adds a ‘/’ between A and B if A is non-empty and if it doesn’t already end with ‘/’.

292

Parameters

• A: first part of the full path

• B: last part of the full path

bool mirheo::createFoldersCollective(const MPI_Comm &comm, std::string path)
Create a folder.

The operation is collective. This means that all ranks in the comm must call it. The returned value is accessible
by all ranks.

Return true if the operation was successful, false otherwise

Parameters

• comm: The communicator used to decide which rank creates the folder

• path: the folder to create

Quaternion

template <class Real>
class Quaternion

Quaternion representation with basic operations.

See also:

• http://www.iri.upc.edu/people/jsola/JoanSola/objectes/notes/kinematics.pdf

• https://arxiv.org/pdf/0811.2889.pdf

Template Parameters

• Real: The precision to be used. Must be a scalar real number type (e.g. float, double).

Public Functions

Quaternion(const Quaternion &q)
copy constructor

Quaternion &operator=(const Quaternion &q)
assignment operator

template <class T>
operator Quaternion<T>() const

conversion to different precision

operator float4() const
conversion to float4 (real part will be stored first, followed by the vector part)

operator double4() const
conversion to double4 (real part will be stored first, followed by the vector part)

Real realPart() const

Return the real part of the quaternion

Real3 vectorPart() const

Return the vector part of the quaternion

293

http://www.iri.upc.edu/people/jsola/JoanSola/objectes/notes/kinematics.pdf
https://arxiv.org/pdf/0811.2889.pdf

Quaternion<Real> conjugate() const

Return the conjugate of the quaternion

Real norm() const

Return the norm of the quaternion

Quaternion &normalize()
Normalize the current quaternion. Must be non zero.

Quaternion normalized() const

Return A normalized copy of this Quaternion

Quaternion &operator+=(const Quaternion &q)
Add a quaternion to the current one.

Quaternion &operator-=(const Quaternion &q)
Subtract a quaternion to the current one.

Quaternion &operator*=(Real a)
Scale the current quaternion.

Quaternion &operator*=(const Quaternion &q)
Multiply the current quaternion with another with Quaternion multiplication and store the result in this
object.

Real3 rotate(Real3 v) const

Return The input vector rotated by the current quaternion

Real3 inverseRotate(Real3 v) const

Return The input vector rotated by the current quaternion inverse

Quaternion timeDerivative(Real3 omega) const

Return The time derivative of the given angular velocity, useful for time integration of rigid objects

Public Members

Real w
real part

Real x
vector part, x

Real y
vector part, y

Real z
vector part, z

Public Static Functions

static Quaternion createFromComponents(Real w, Real x, Real y, Real z)
Create a Quaternion from components.

294

static Quaternion createFromComponents(Real w, Real3 v)
Create a Quaternion from real part and vector part.

static Quaternion createFromComponents(Real4 v)
Create a Quaternion from components.

static Quaternion pureVector(Real3 v)
Create a pure vector Quaternion.

static Quaternion createFromRotation(Real angle, Real3 axis)
Create a Quaternion that represents the rotation around an axis with a given angle.

Parameters

• angle: The angle (in radians) of the rotation

• axis: The axis of rotation, must be non zero (or nan will be returned)

static Quaternion createFromVectors(Real3 from, Real3 to)
Create a Quaternion that represents the “shortest” rotation between two vectors.

The vectors must be non zero.

Parameters

• from: The origin vector

• to: The vector obtained by applying the rotation to from

Friends

Quaternion operator+(Quaternion q1, const Quaternion &q2)

Return The sum of 2 quaternions

Quaternion operator-(Quaternion q1, const Quaternion &q2)

Return The difference of 2 quaternions

Quaternion operator*(Real a, Quaternion q)

Return The scalar multiplication of a quaternion

Quaternion operator*(Quaternion q, Real a)

Return The scalar multiplication of a quaternion

Quaternion operator*(const Quaternion &q1, const Quaternion &q2)

Return The quaternion product of 2 quaternions

18.28 Walls

See also the user interface.

295

Base classes

class Wall : public mirheo::MirSimulationObject
Physical boundaries of the simulation.

A wall is composed of its surface. Additionally, frozen particles can be created from that surface and attached
to the wall.

Subclassed by mirheo::SDFBasedWall

Public Functions

Wall(const MirState *state, const std::string &name)
Construct a Wall.

Parameters

• state: The simulation state.

• name: The name of the wall.

virtual void setup(MPI_Comm &comm) = 0
Initialize the wall internal state.

This must be called before any other wall operations that involve its surface.

Parameters

• comm: The MPI Cartesian communicator of the simulation.

virtual void attachFrozen(ParticleVector *pv) = 0
Set frozen particles to the wall.

The frozen particles may be modified in the operation (velocities set to the wall’s one).

Parameters

• pv: The frozen particles.

virtual void removeInner(ParticleVector *pv) = 0
Remove particles inside the walls.

If pv is an ObjectVector, any object with at least one particle will be removed by this operation.

Parameters

• pv: ParticleVector to remove the particles from.

virtual void attach(ParticleVector *pv, CellList *cl, real maximumPartTravel) = 0
Register a ParticleVector that needs to be bounced from the wall.

Multiple ParticleVector can be registered by calling this method several times. The parameter maxi-
mumPartTravel is used for performance, lower leading to higher performances. Note that if it is too low,
some particles may be ignored and not bounced and end up inside the walls (see bounce()).

Parameters

• pv: The particles to be bounced. Will be ignored if it is the same as the frozen particles.

• cl: Cell lists corresponding to pv.

• maximumPartTravel: The estimated maximum distance traveled by one particle over a single
time step.

296

virtual void detachAllCellLists() = 0
Clean up all information regarding cell lists generated by attach.

virtual void bounce(cudaStream_t stream) = 0
Bounce the particles attached to the wall.

The particles that are bounced must be registered previously exactly once with attach().

Parameters

• stream: The stream to execute the bounce operation on.

virtual void setPrerequisites(ParticleVector *pv)
Set properties needed by the particles to be bounced.

Must be called just after setup() and before any bounce(). Default: ask nothing.

Parameters

• pv: Particles to add additional properties to.

virtual void check(cudaStream_t stream) = 0
Counts number of particles inside the walls and report it in the logs.

The particles that are counted must be previously attached to the walls by calling attach().

Parameters

• stream: The stream to execute the check operation on.

class SDFBasedWall : public mirheo::Wall
Wall with surface represented via a signed distance function (SDF).

The surface of the wall is the zero level set of its SDF. The SDF has positive values outside the simulation
domain (called inside the walls), and is negative inside the simulation domain.

Subclassed by mirheo::SimpleStationaryWall< InsideWallChecker >

Public Functions

virtual void sdfPerParticle(LocalParticleVector *lpv, GPUcontainer *sdfs, GPUcontainer
*gradients, real gradientThreshold, cudaStream_t stream) = 0

Compute the wall SDF at particles positions.

Parameters

• lpv: Input particles.

• sdfs: Values of the SDF at the particle positions.

• gradients: Gradients of the SDF at the particle positions. Can be disabled by passing a nullptr.

• gradientThreshold: Compute gradients for particles that are only within that distance. Ir-
relevant if gradients is nullptr.

• stream: The stream to execute the operation on.

virtual void sdfPerPosition(GPUcontainer *positions, GPUcontainer *sdfs, cudaStream_t
stream) = 0

Compute the wall SDF at given positions.

Parameters

297

• positions: Input positions.

• sdfs: Values of the SDF at the given positions.

• stream: The stream to execute the operation on.

virtual void sdfOnGrid(real3 gridH, GPUcontainer *sdfs, cudaStream_t stream) = 0
Compute the wall SDF on a uniform grid.

This method will resize the sdfs container internally.

Parameters

• gridH: grid spacing.

• sdfs: Values of the SDF at the grid nodes positions.

• stream: The stream to execute the operation on.

virtual PinnedBuffer<double3> *getCurrentBounceForce() = 0
Get accumulated force of particles on the wall at the previous bounce() operation..

Derived classes

template <class InsideWallChecker>
class SimpleStationaryWall : public mirheo::SDFBasedWall

SDF based Wall with zero velocity boundary conditions.

Template Parameters

• InsideWallChecker: Wall shape representation.

Subclassed by mirheo::WallWithVelocity< InsideWallChecker, VelocityField >

Public Functions

SimpleStationaryWall(const MirState *state, const std::string &name, InsideWallChecker
&&insideWallChecker)

Construct a SimpleStationaryWall object.

Parameters

• state: The simulation state.

• name: The wall name.

• insideWallChecker: A functor that represents the wall surface (see stationary_walls/).

void setup(MPI_Comm &comm)
Initialize the wall internal state.

This must be called before any other wall operations that involve its surface.

Parameters

• comm: The MPI Cartesian communicator of the simulation.

298

void setPrerequisites(ParticleVector *pv)
Set properties needed by the particles to be bounced.

Must be called just after setup() and before any bounce(). Default: ask nothing.

Parameters

• pv: Particles to add additional properties to.

void attachFrozen(ParticleVector *pv)
Set frozen particles to the wall.

The frozen particles may be modified in the operation (velocities set to the wall’s one).

Parameters

• pv: The frozen particles.

void removeInner(ParticleVector *pv)
Remove particles inside the walls.

If pv is an ObjectVector, any object with at least one particle will be removed by this operation.

Parameters

• pv: ParticleVector to remove the particles from.

void attach(ParticleVector *pv, CellList *cl, real maximumPartTravel)
Register a ParticleVector that needs to be bounced from the wall.

Multiple ParticleVector can be registered by calling this method several times. The parameter maxi-
mumPartTravel is used for performance, lower leading to higher performances. Note that if it is too low,
some particles may be ignored and not bounced and end up inside the walls (see bounce()).

Parameters

• pv: The particles to be bounced. Will be ignored if it is the same as the frozen particles.

• cl: Cell lists corresponding to pv.

• maximumPartTravel: The estimated maximum distance traveled by one particle over a single
time step.

void detachAllCellLists()
Clean up all information regarding cell lists generated by attach.

void bounce(cudaStream_t stream)
Bounce the particles attached to the wall.

The particles that are bounced must be registered previously exactly once with attach().

Parameters

• stream: The stream to execute the bounce operation on.

void check(cudaStream_t stream)
Counts number of particles inside the walls and report it in the logs.

The particles that are counted must be previously attached to the walls by calling attach().

Parameters

• stream: The stream to execute the check operation on.

299

void sdfPerParticle(LocalParticleVector *lpv, GPUcontainer *sdfs, GPUcontainer *gradients,
real gradientThreshold, cudaStream_t stream)

Compute the wall SDF at particles positions.

Parameters

• lpv: Input particles.

• sdfs: Values of the SDF at the particle positions.

• gradients: Gradients of the SDF at the particle positions. Can be disabled by passing a nullptr.

• gradientThreshold: Compute gradients for particles that are only within that distance. Ir-
relevant if gradients is nullptr.

• stream: The stream to execute the operation on.

void sdfPerPosition(GPUcontainer *positions, GPUcontainer *sdfs, cudaStream_t stream)
Compute the wall SDF at given positions.

Parameters

• positions: Input positions.

• sdfs: Values of the SDF at the given positions.

• stream: The stream to execute the operation on.

void sdfOnGrid(real3 gridH, GPUcontainer *sdfs, cudaStream_t stream)
Compute the wall SDF on a uniform grid.

This method will resize the sdfs container internally.

Parameters

• gridH: grid spacing.

• sdfs: Values of the SDF at the grid nodes positions.

• stream: The stream to execute the operation on.

InsideWallChecker &getChecker()
get a reference of the wall surfae representation.

PinnedBuffer<double3> *getCurrentBounceForce()
Get accumulated force of particles on the wall at the previous bounce() operation..

template <class InsideWallChecker, class VelocityField>
class WallWithVelocity : public mirheo::SimpleStationaryWall<InsideWallChecker>

SDF-based wall with non zero velocity boundary conditions.

Template Parameters

• InsideWallChecker: Wall shape representation.

• VelocityField: Wall velocity representation.

300

Public Functions

WallWithVelocity(const MirState *state, const std::string &name, InsideWallChecker &&in-
sideWallChecker, VelocityField &&velField)

Construct a WallWithVelocity object.

Parameters

• state: The simulation state.

• name: The wall name.

• insideWallChecker: A functor that represents the wall surface (see stationary_walls/).

• velField: A functor that represents the wall velocity (see velocity_field/).

void setup(MPI_Comm &comm)
Initialize the wall internal state.

This must be called before any other wall operations that involve its surface.

Parameters

• comm: The MPI Cartesian communicator of the simulation.

void attachFrozen(ParticleVector *pv)
Set frozen particles to the wall.

The frozen particles may be modified in the operation (velocities set to the wall’s one).

Parameters

• pv: The frozen particles.

void bounce(cudaStream_t stream)
Bounce the particles attached to the wall.

The particles that are bounced must be registered previously exactly once with attach().

Parameters

• stream: The stream to execute the bounce operation on.

Wall shapes

class StationaryWallBox
Represents a box shape.

Public Functions

StationaryWallBox(real3 lo, real3 hi, bool inside)
Construct a StationaryWallBox.

Parameters

• lo: Lower bounds of the box (in global coordinates).

• hi: Upper bounds of the box (in global coordinates).

• inside: Domain is inside the box if set to true.

301

void setup(MPI_Comm &comm, DomainInfo domain)
Synchronize internal state with simulation.

Parameters

• comm: MPI carthesia communicator

• domain: Domain info

const StationaryWallBox &handler() const
Get a handler of the shape representation usable on the device.

real operator()(real3 r) const
Get the SDF of the current shape at a given position.

Return The SDF value

Parameters

• r: position in local coordinates

class StationaryWallCylinder
Represents a cylinder along one of the main axes.

Public Types

enum Direction
Represents the direction of the main axis of the cylinder.

Values:

x

y

z

Public Functions

StationaryWallCylinder(real2 center, real radius, Direction dir, bool inside)
Construct a StationaryWallCylinder.

Parameters

• center: Center of the cylinder in global coordinates in the plane perpendicular to the direction

• radius: Radius of the cylinder

• dir: The direction of the main axis.

• inside: Domain is inside the cylinder if set to true.

void setup(MPI_Comm &comm, DomainInfo domain)
Synchronize internal state with simulation.

Parameters

• comm: MPI carthesia communicator

302

• domain: Domain info

const StationaryWallCylinder &handler() const
Get a handler of the shape representation usable on the device.

real operator()(real3 r) const
Get the SDF of the current shape at a given position.

Return The SDF value

Parameters

• r: position in local coordinates

class StationaryWallPlane
Represents a planar wall.

Public Functions

StationaryWallPlane(real3 normal, real3 pointThrough)
Construct a StationaryWallPlane.

Parameters

• normal: Normal of the wall, pointing inside the walls.

• pointThrough: One point inside the plane, in global coordinates.

void setup(MPI_Comm &comm, DomainInfo domain)
Synchronize internal state with simulation.

Parameters

• comm: MPI carthesia communicator

• domain: Domain info

const StationaryWallPlane &handler() const
Get a handler of the shape representation usable on the device.

real operator()(real3 r) const
Get the SDF of the current shape at a given position.

Return The SDF value

Parameters

• r: position in local coordinates

class StationaryWallSDF
Represent an arbitrary SDF field on a grid.

303

Public Functions

StationaryWallSDF(const MirState *state, std::string sdfFileName, real3 sdfH, real3 margin)
Construct a StationaryWallSDF from a file.

Parameters

• state: Simulation state

• sdfFileName: The input file name

• sdfH: The grid spacing

• margin: Additional margin to store in each rank; useful to bounce-back local particles.

StationaryWallSDF(StationaryWallSDF&&)
Move ctor.

void setup(MPI_Comm &comm, DomainInfo domain)
Synchronize internal state with simulation.

Parameters

• comm: MPI carthesia communicator

• domain: Domain info

const FieldDeviceHandler &handler() const
Get a handler of the shape representation usable on the device.

class StationaryWallSphere
Represents a sphere shape.

Public Functions

StationaryWallSphere(real3 center, real radius, bool inside)
Construct a StationaryWallSphere.

Parameters

• center: Center of the sphere in global coordinates

• radius: Radius of the sphere

• inside: Domain is inside the box if set to true.

void setup(MPI_Comm &comm, DomainInfo domain)
Synchronize internal state with simulation.

Parameters

• comm: MPI carthesia communicator

• domain: Domain info

const StationaryWallSphere &handler() const
Get a handler of the shape representation usable on the device.

304

real operator()(real3 r) const
Get the SDF of the current shape at a given position.

Return The SDF value

Parameters

• r: position in local coordinates

Velocity fields

class VelocityFieldNone
Zero velocity field.

Public Functions

void setup(real t, DomainInfo domain)
to fit the interface

const VelocityFieldNone &handler() const
get a handler that can be used on device

real3 operator()(real3 r) const
Evaluate the velocity field at a given position.

Return The velocity value

Parameters

• r: The position in local coordinates

class VelocityFieldOscillate
Oscillating velocity field in time.

v(𝑡) = cos
2𝜋𝑡

𝑇
v,

where 𝑇 is the period.

Public Functions

VelocityFieldOscillate(real3 vel, real period)
Construct a VelocityFieldOscillate object.

Parameters

• vel: The maximum velocity vector

• period: Oscillating period in simulation time. Fails if negative.

void setup(real t, DomainInfo domain)
Synchronize with simulation state.

Must be called at every time step.

305

Parameters

• t: Simulation time.

• domain: domain info.

const VelocityFieldOscillate &handler() const
get a handler that can be used on the device.

real3 operator()(real3 r) const
Evaluate the velocity field at a given position.

Return The velocity value

Parameters

• r: The position in local coordinates

class VelocityFieldRotate
Rotating velocity field (constant in time).

The field is defined by a center and an angular velocity:

v(r) = 𝜔 × (r− c)

Public Functions

VelocityFieldRotate(real3 omega, real3 center)
Construct a VelocityFieldRotate object.

Parameters

• omega: The angular velocity

• center: Center of rotation in global coordinates

void setup(real t, DomainInfo domain)
Synchronize with simulation state.

Must be called at every time step.

Parameters

• t: Simulation time.

• domain: domain info.

const VelocityFieldRotate &handler() const
get a handler that can be used on the device.

real3 operator()(real3 r) const
Evaluate the velocity field at a given position.

Return The velocity value

Parameters

• r: The position in local coordinates

306

class VelocityFieldTranslate
Constant velocity field.

Public Functions

VelocityFieldTranslate(real3 vel)
Construct a VelocityFieldTranslate.

Parameters

• vel: The constant velocity

void setup(real t, DomainInfo domain)
to fir the interface

const VelocityFieldTranslate &handler() const
get a handler that can be used on the device

real3 operator()(real3 r) const
Evaluate the velocity field at a given position.

Return The velocity value

Parameters

• r: The position in local coordinates

18.29 XDMF

A set of classes and functions to write/read data to/from xdmf + hdf5 files format.

VertexChannelsData mirheo::XDMF::readVertexData(const std::string &filename, MPI_Comm
comm, int chunkSize)

Read particle data from a pair of xmf+hdf5 files.

Return The read data (on the local rank)

Parameters

• filename: the xdmf file name (with extension)

• comm: The communicator used in the I/O process

• chunkSize: The smallest piece that processors can split

Grids

mirheo::XDMF::Grid objects are used to represent the geometry of the data that will be dumped.

Interface

class GridDims
Interface to represent the dimensions of the geometry data.

Subclassed by mirheo::XDMF::VertexGrid::VertexGridDims

307

Public Functions

virtual std::vector<hsize_t> getLocalSize() const = 0
number of elements in the current subdomain

virtual std::vector<hsize_t> getGlobalSize() const = 0
number of elements in the whole domain

virtual std::vector<hsize_t> getOffsets() const = 0
start indices in the current subdomain

bool localEmpty() const

Return true if there is no data in the current subdomain

bool globalEmpty() const

Return true if there is no data in the whole domain

int getDims() const

Return The current dimension of the data (e.g. 3D for uniform grids, 1D for particles)

class Grid
Interface to represent The geometry of channels to dump.

Subclassed by mirheo::XDMF::UniformGrid, mirheo::XDMF::VertexGrid

Public Functions

virtual const GridDims *getGridDims() const = 0

Return the GridDims that describes the data dimensions

virtual std::string getCentering() const = 0

Return A string describing (for XDMF) data location (e.g. “Node” or “Cell”)

virtual void writeToHDF5(hid_t file_id, MPI_Comm comm) const = 0
Dump the geometry description to hdf5 file.

Parameters

• file_id: The hdf5 file description

• comm: MPI communicator that was used to open the file

virtual pugi::xml_node writeToXMF(pugi::xml_node node, std::string h5filename) const = 0
Dump the geometry description to xdmf file.

Parameters

• node: The xml node that will store the geometry information

• h5filename: name of the hdf5 file that will contain the data

virtual void readFromXMF(const pugi::xml_node &node, std::string &h5filename) = 0
read the geometry info contained in the xdmf file

Note must be called before splitReadAccess()

308

Parameters

• node: The xmf data

• h5filename: The name of the associated hdf5 file

virtual void splitReadAccess(MPI_Comm comm, int chunkSize = 1) = 0
Set the number of elements to read for the current subdomain.

Note must be called after readFromXMF()

Parameters

• comm: Communicator that will be used to read the hdf5 file

• chunkSize: For particles, this affects the number of particles to keep together on a single rank.
Useful for objects.

virtual void readFromHDF5(hid_t file_id, MPI_Comm comm) = 0
Read the geometry data contained in the hdf5 file.

Note must be called after splitReadAccess()

Parameters

• file_id: The hdf5 file reference

• comm: MPI communicator used in the I/O

Implementation

class UniformGrid : public mirheo::XDMF::Grid
Representation of a uniform grid geometry.

Each subdomain has the same number of grid points in every direction.

Public Functions

UniformGrid(int3 localSize, real3 h, MPI_Comm cartComm)
construct a UniformGrid object

Note all these parameters must be the same on every rank

Parameters

• localSize: The dimensions of the grid per rank

• h: grid spacing

• cartComm: The cartesian communicator that will be used for I/O

const GridDims *getGridDims() const

Return the GridDims that describes the data dimensions

std::string getCentering() const

Return A string describing (for XDMF) data location (e.g. “Node” or “Cell”)

309

void writeToHDF5(hid_t file_id, MPI_Comm comm) const
Dump the geometry description to hdf5 file.

Parameters

• file_id: The hdf5 file description

• comm: MPI communicator that was used to open the file

pugi::xml_node writeToXMF(pugi::xml_node node, std::string h5filename) const
Dump the geometry description to xdmf file.

Parameters

• node: The xml node that will store the geometry information

• h5filename: name of the hdf5 file that will contain the data

void readFromXMF(const pugi::xml_node &node, std::string &h5filename)
read the geometry info contained in the xdmf file

Note must be called before splitReadAccess()

Parameters

• node: The xmf data

• h5filename: The name of the associated hdf5 file

void splitReadAccess(MPI_Comm comm, int chunkSize = 1)
Set the number of elements to read for the current subdomain.

Note must be called after readFromXMF()

Parameters

• comm: Communicator that will be used to read the hdf5 file

• chunkSize: For particles, this affects the number of particles to keep together on a single rank.
Useful for objects.

void readFromHDF5(hid_t file_id, MPI_Comm comm)
Read the geometry data contained in the hdf5 file.

Note must be called after splitReadAccess()

Parameters

• file_id: The hdf5 file reference

• comm: MPI communicator used in the I/O

class VertexGrid : public mirheo::XDMF::Grid
Representation of particles geometry.

Each rank contains the positions of the particles in GLOBAL coordinates.

Subclassed by mirheo::XDMF::PolylineMeshGrid, mirheo::XDMF::TriangleMeshGrid

310

Public Functions

VertexGrid(std::shared_ptr<std::vector<real3>> positions, MPI_Comm comm)
Construct a VertexGrid object.

Note The positions are passed as a shared pointer so that this class is able to either allocate its own
memory or can share it with someone else

Parameters

• positions: The positions of the particles in the current subdomain, in global coordinates

• comm: The communicator that will be used for I/O

const GridDims *getGridDims() const

Return the GridDims that describes the data dimensions

std::string getCentering() const

Return A string describing (for XDMF) data location (e.g. “Node” or “Cell”)

void writeToHDF5(hid_t file_id, MPI_Comm comm) const
Dump the geometry description to hdf5 file.

Parameters

• file_id: The hdf5 file description

• comm: MPI communicator that was used to open the file

pugi::xml_node writeToXMF(pugi::xml_node node, std::string h5filename) const
Dump the geometry description to xdmf file.

Parameters

• node: The xml node that will store the geometry information

• h5filename: name of the hdf5 file that will contain the data

void readFromXMF(const pugi::xml_node &node, std::string &h5filename)
read the geometry info contained in the xdmf file

Note must be called before splitReadAccess()

Parameters

• node: The xmf data

• h5filename: The name of the associated hdf5 file

void splitReadAccess(MPI_Comm comm, int chunkSize = 1)
Set the number of elements to read for the current subdomain.

Note must be called after readFromXMF()

Parameters

• comm: Communicator that will be used to read the hdf5 file

311

• chunkSize: For particles, this affects the number of particles to keep together on a single rank.
Useful for objects.

void readFromHDF5(hid_t file_id, MPI_Comm comm)
Read the geometry data contained in the hdf5 file.

Note must be called after splitReadAccess()

Parameters

• file_id: The hdf5 file reference

• comm: MPI communicator used in the I/O

class TriangleMeshGrid : public mirheo::XDMF::VertexGrid
Representation of triangle mesh geometry.

This is a VertexGrid associated with the additional connectivity (list of triangle faces). The vertices are stored
in global coordinates and the connectivity also stores indices in global coordinates.

Public Functions

TriangleMeshGrid(std::shared_ptr<std::vector<real3>> positions,
std::shared_ptr<std::vector<int3>> triangles, MPI_Comm comm)

Construct a TriangleMeshGrid object.

Parameters

• positions: The positions of the particles in the current subdomain, in global coordinates

• triangles: The list of faces in the current subdomain (global indices)

• comm: The communicator that will be used for I/O

void writeToHDF5(hid_t file_id, MPI_Comm comm) const
Dump the geometry description to hdf5 file.

Parameters

• file_id: The hdf5 file description

• comm: MPI communicator that was used to open the file

Channel

namespace mirheo
Common namespace for all Mirheo code.

Copyright 1993-2013 NVIDIA Corporation.

All rights reserved.q

Please refer to the NVIDIA end user license agreement (EULA) associated with this source code for terms
and conditions that govern your use of this software. Any use, reproduction, disclosure, or distribution of this
software and related documentation outside the terms of the EULA is strictly prohibited.

namespace XDMF
namespace for all functions related to I/O with XDMF + hdf5

312

Functions

std::string dataFormToXDMFAttribute(Channel::DataForm dataForm)
Return the xdmf-compatible string that describes the Channel::DataForm

int dataFormToNcomponents(Channel::DataForm dataForm)
Return the number of components in the Channel::DataForm

std::string dataFormToDescription(Channel::DataForm dataForm)
Return a unique string that describes the Channel::DataForm (two different may map to the same

xdmf attribute)

Channel::DataForm descriptionToDataForm(const std::string &str)
reverse of dataFormToDescription()

decltype(H5T_NATIVE_FLOAT) numberTypeToHDF5type(Channel::NumberType nt)
Return the HDF5-compatible description of the given Channel::NumberType data type

std::string numberTypeToString(Channel::NumberType nt)
Return the xdmf-compatible string corresponding to the given Channel::NumberType data type

int numberTypeToPrecision(Channel::NumberType nt)
Return the size in bytes of the type represented by the given Channel::NumberType data type

Channel::NumberType infoToNumberType(const std::string &str, int precision)
reverse of numberTypeToString() and numberTypeToPrecision()

struct Channel
#include <channel.h> Describes one array of data to be dumped or read.

Public Types

enum NumberType
The type of the data contained in one element.

Values:

Float

Double

Int

Int64

enum NeedShift
If the data depends on the coordinates.

Values:

True

False

using DataForm = std::variant<Scalar, Vector, Tensor6, Tensor9, Quaternion, Triangle, Vector4, RigidMotion, Polyline, Other>
The topology of one element in the channel.

313

Public Functions

int nComponents() const
Number of component in each element (e.g. Vector has 3)

int precision() const
Number of bytes of each component in one element.

Public Members

std::string name
Name of the channel.

void *data
pointer to the data that needs to be dumped

DataForm dataForm
topology of one element

NumberType numberType
data type (enum version)

TypeDescriptor type
data type (variant version)

NeedShift needShift
wether the data depends on the coordinates or not

struct Polyline
#include <channel.h> Sequence of positions on a chain.

Public Members

int numVertices
Number of vertices fora each polyline.

References

[alexeev2020] Alexeev, Dmitry, et al. “Mirheo: High-performance mesoscale simulations for microfluidics.” Com-
puter Physics Communications 254 (2020): 107298.

[economides2021] Economides, Athena, et al. “Hierarchical Bayesian Uncertainty Quantification for a Model of the
Red Blood Cell.” Physical Review Applied 15.3 (2021): 034062.

[amoudruz2021] Amoudruz, Lucas, and Petros Koumoutsakos. “Independent Control and Path Planning of Mi-
croswimmers with a Uniform Magnetic Field.” Advanced Intelligent Systems (2021): 2100183.

[Fedosov2010] Fedosov, D. A.; Caswell, B. & Karniadakis, G. E. A multiscale red blood cell model with accurate
mechanics, rheology, and dynamics Biophysical journal, Elsevier, 2010, 98, 2215-2225

[kantor1987] Kantor, Y. & Nelson, D. R. Phase transitions in flexible polymeric surfaces Physical Review A, APS,
1987, 36, 4020

[Juelicher1996] Juelicher, Frank, and Reinhard Lipowsky. Shape transformations of vesicles with intramembrane
domains. Physical Review E 53.3 (1996): 2670.

314

[Bian2020] Bian, Xin, Sergey Litvinov, and Petros Koumoutsakos. Bending models of lipid bilayer membranes:
Spontaneous curvature and area-difference elasticity. Computer Methods in Applied Mechanics and En-
gineering 359 (2020): 112758.

[Lim2008] Lim HW, Gerald, Michael Wortis, and Ranjan Mukhopadhyay. Red blood cell shapes and shape transfor-
mations: newtonian mechanics of a composite membrane: sections 2.1–2.4. Soft Matter: Lipid Bilayers
and Red Blood Cells 4 (2008): 83-139.

[Groot1997] Groot, R. D., & Warren, P. B. (1997). Dissipative particle dynamics: Bridging the gap
between atomistic and mesoscopic simulations. J. Chem. Phys., 107(11), 4423-4435. doi
<https://doi.org/10.1063/1.474784>

[Warren2003] Warren, P. B. “Vapor-liquid coexistence in many-body dissipative particle dynamics.” Physical Review
E 68.6 (2003): 066702.

[Hu2006] Hu, X. Y., and N. A. Adams. “Angular-momentum conservative smoothed particle dynamics for incom-
pressible viscous flows.” Physics of Fluids 18.10 (2006): 101702.

[Bian2012] Bian, Xin, et al. “Multiscale modeling of particle in suspension with smoothed dissipative particle dy-
namics.” Physics of Fluids 24.1 (2012): 012002.

[bergou2008] Bergou, M.; Wardetzky, M.; Robinson, S.; Audoly, B. & Grinspun, E. Discrete elastic rods ACM
transactions on graphics (TOG), 2008, 27, 63

315

Python Module Index

m
mmirheo.BelongingCheckers, 49
mmirheo.Bouncers, 63
mmirheo.InitialConditions, 45
mmirheo.Integrators, 51
mmirheo.Interactions, 54
mmirheo.ParticleVectors, 35
mmirheo.Plugins, 72
mmirheo.Utils, 85
mmirheo.Walls, 66

316

	Overview
	Installation
	Testing
	Tutorials
	Benchmarks
	Mirheo coordinator
	Particle Vectors
	Initial conditions
	Object belonging checkers
	Integrators
	Interactions
	Object bouncers
	Walls
	Plugins
	Utils
	Overview
	Coding Conventions
	Library API
	References
	Python Module Index

